

CarTech® X-750 Alloy

Identification

UNS Number

• N07750

Type Analysis						
Single figures are nominal except who	ere noted.					
Carbon (Maximum)	0.08 %	Manganese (Maximum)	0.30 %			
Sulfur (Maximum)	0.010 %	Silicon (Maximum)	0.50 %			
Chromium	14.00 to 17.00 %	Copper (Maximum)	0.50 %			
Cobalt (Maximum)	1.00 %	Titanium	2.25 to 2.70 %			
Aluminum	0.40 to 1.00 %	Columbium + Tantalum	0.70 to 1.20 %			
Nickel + Cobalt (Minimum)	70.00 %	Iron	5.00 to 9.00 %			
Aluminum Nickel + Cobalt (Minimum)	0.40 to 1.00 % 70.00 %	Columbium + Tantalum Iron	0.70 to 1.20 % 5.00 to 9.00 %			

*Cobalt concentration is a "If determined."

General Information

Description

CarTech X-750 alloy is a precipitation -hardenable alloy which is highly resistant to chemical corrosion and oxidation and has high stress-rupture strength and low creep rates under high stresses at temperatures up to 1500°F (816°C) after suitable heat treatment.

Applications

This alloy has been used in applications such as high temperature structural members for gas turbines, jet engine parts, nuclear power plant applications, heat-treating fixtures, forming tools, and extrusion dies.

Corrosion Resistance

Pyromet Alloy X-750 possesses excellent resistance to chloride ion stress-corrosion cracking. It exhibits satisfactory resistance to numerous oxidizing environments. The alloy has similar corrosion resistance to Pyromet Alloy 600 in many media.

Important Note: The following 4-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors which affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish and dissimilar metal contact.

Nitric Acid	Good	Sulfuric Acid	Moderate
Phosphoric Acid	Moderate	Acetic Acid	Moderate
Sodium Hydroxide	Good	Salt Spray (NaCl)	Good
Sea Water	Moderate	Sour Oil/Gas	Moderate
Humidity	Excellent		

	Properties						
I	Physical Properties						
[Density				0.3000	lb/in³	
ľ	Mean Specific Heat						
	77 to 212°F				0.1000	Btu/lb/°F	
	77 to 1652°F				0.1300	Btu/lb/°F	
	Specific heat	Btu/lb•°F	kJ/kg+K				
	77/212"F (25/100"C) 77/1650"F (25/899"C)	0.10-0.11 0.13	0.42-0.46 0.54				

CarTech® X-750 Alloy

Mean CTE	
80 to 200°F	6.70 x 10 ⊸ in/in/°F
80 to 600°F	7.50 x 10 ⊸ in/in/°F
80 to 1000°F	7.90 x 10 ⊸ in/in/°F
80 to 1200°F	8.10 x 10 ⊸ in/in/°F
80 to 1600°F	9.00 x 10 ⊸ in/in/°F

Coefficient of Thermal Expansion

Temperature		10.105	10.000	
80°F to	26.7°C to	10-7-1	10-7-0	
200	93	6.7	12.1	
600	316	7.5	13.5	
1000	538	7.9	14.2	
1200	649	8.1	14.6	
1600	871	9.0	16.2	

Thermal Conductivity

•		
300°F	117.0	BTU-in/hr/ft²/°F
600°F	142.0	BTU-in/hr/ft²/°F
1000°F	184.0	BTU-in/hr/ft²/°F
1200°F	199.0	BTU-in/hr/ft²/°F
1400°F	218.0	BTU-in/hr/ft²/°F
1600°F	245.0	BTU-in/hr/ft²/°F

Thermal Conductivity

Temperature °F °C		D4. 1-443-1-07	W/m•K	
		Btu-in/ft*•nr•*F		
300	149	117	16.9	
600	316	142	20.5	
1000	538	184	26.5	
1200	649	199	28.7	
1400	760	218	31.4	
1600	871	245	35.3	

Modulus of Elasticity (E)	
80°F	31.0 x 10 ₃ ksi
500°F	28.7 x 10 ³ ksi
1000°F	25.0 x 10 ₃ ksi
1350°F	21.0 x 10 ³ ksi
1501°F	18.5 x 10 ₃ ksi

Modulus of Elasticity

Temperature				
۴F	°C	psix 10" MPa x		
80	26.7	31.0	213.7	
500	260.0	28.7	197.9	
1000	538.0	25.0	172.4	
1350	732.0	21.0	144.8	
1500	816.0	18.5	127.6	

Electrical Resistivity

73°F, Hot Rolled	764.0 ohm-cir-mil/ft
73°F, Solution Treated	716.0 ohm-cir-mil/ft
73°F, Solution Treated + Aged	746.0 ohm-cir-mil/ft

Electrical Resistivity

0	ohm-cir mil/ft	microhm-mm		
Condition	At Room Temperature			
Hot Rolled	764	1270		
Solution Treated	716	1190		
Solution Treated & Aged	746	1240		

Melting Range

2540 to 2600 °F

Typical Mechanical Properties

Bar Stock: Treatment #1

Solution treatment 2100°F (1149°C), 2 to 4 hrs., air cool Intermediate age 1550°F (843°C), 24 hrs., air cool Final age 1300°F (704°C), 20 hrs., air cool

		Short-Time Tensile Properties Tests					
Test Temperature		Yield Strength 0.2% offset		Ultimate Tensile Strength		% Elongation	% Reduction
۰F	°C	ksi	MPa	ksi	MPa	11 2 (50.6 mm)	of Area
70	21.1	92	634	161	1110	22	30
1000	538.0	83	572	140	965	20	30
1200	649.0	82	565	120	827	10	21
1400	760.0	68	469	80	552	10	22
1500	816.0	45	310	47	324	20	32

Stress-rupture data-Treatment #1

Test Temperature		Stress for Rupture in*							
		10 Hours		100 Hours		1000 Hours			
۴F	°C	ksi	MPa	ksi	MPa	ksi	MPa		
1100 1200 1350 1500	593 649 732 816	130 90 60 34	896 621 414 234	110 80 49 26	758 552 338 179	90 69 38 16	621 476 262 110		

Approximate values

Treatment #2

Stress equalization 1625°F (885°C), 24 hrs., air cool Precipitation age 1300°F (704°C), 20 hrs., air cool

Test Temperature		Short-Time Tensile Properties Tests							
		Yield Strength 0.2% offset		Ultimate Tensile Strength		% Elongation	% Reduction		
۴F	°C	ksi	MPa	ksi	MPa	11 2 (50.8 mm)	of Alea		
70 800 1000 1200 1400	21.1 427.0 538.0 649.0 760.0	125 112 111 110 96	862 772 765 758 662	178 162 157 142 99	1227 1117 1082 979 683	23 23 22 10 10	35 34 31 15 15		

Heat Treatment

Pyromet alloy X-750 is austenitic under all conditions. The alloy is heat treated by several different methods depending upon the application or requirement. Two common treatments are:

1. For maximum creep, relaxation and rupture strength at temperatures above 1100°F (593°C):

Solution Treatment - 2100°F (1149°C), 2 to 4 hrs., air cool Intermediate Age - 1550°F (843°C), 24 hrs., air cool Final Age - 1300°F (704°C), 20 hrs., air cool

2. For highest room temperature yield strength and tensile ductility:

Stress Equalization - 1625°F (885°C), 24 hrs., air cool Precipitation Age - 1300°F (704°C), 20 hrs., air cool

Workability

The furnace temperature should be 2100°F (1149°C) - for optimal starting temperatures of 1950/2000°F (1066/1093°C). For service below 1100°F (593°C), higher strength can be obtained by combining some cold work with heat treatment because the effects are additive.

Machinability

Pyromet alloy X-750 work hardens quickly and is more difficult to machine than most standard ferritic and martensitic alloys. The alloy is most easily machined in the stress-equalized condition. Because specific cutting forces are high, the machine tools used must have ample power and the cutting speed should be slow. The tools must have smooth finishes, be sharp, and be very rigid. To avoid work hardening, a continuous, smooth cutting action should be maintained; thus, the machines must have a minimum of backlash and the tool and workpiece must be rigidly supported. If at all possible, avoid very small cuts and feeds.

Weldability

Pyromet alloy X-750 should be welded in the stress-equalized condition, 1625°F (885°C) heat treatment, and solution treated and age hardened after welding has been completed. If this is not practical, the alloy should be welded in the solution-treated condition and age hardened after welding with or without the inclusion of a short-period stress-relieving treatment at 1625°F (885°C). Weld joints, because of softening of the alloy within the heat-affected zone, should be located where lower creep properties are required.

Other Information

Applicable Specifications					
• AMS 5667	• AMS 5668				
• AMS 5669	• AMS 5670				
• AMS 5671	MIL-N-8550 Condition E				
Forms Manufactured					
Bar-Rounds	• Billet				
Strip					
Technical Articles					
Trends in High Temperatu	re Alloys				

Disclaimer:

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation Copyright © 2020 CRS Holdings Inc. All rights reserved.

Visit us on the web at www.cartech.com

Edition Date: 9/8/2003