

DATASHEET

TI 6AL-4V ELI

Applicable specifications: AMS 4930, AMS 4931, AMS 4956, AMS 4996, ASTM F136, ASTM F620, AWS A5.16-2013

Type analysis

Single figures are nominal except where noted. Other, Each, max = 0.1%. For AMS 4930 rev. D, Hydrogen = 0.0125% and Yttrium = 0.005%.

Titanium	Balance	Aluminum	5.50-6.50 %	Vanadium	3.50-4.50 %
Iron	max 0.25 %	Oxygen	max 0.130 %	Carbon	max 0.080 %
Nitrogen	max 0.050 %	Hydrogen	max 0.013 %	Other, Total	max 0.40 %

Forms manufactured

Powder SMART Coi	[®] Titanium Coil ¹ ULTRABAR [®] Precision Bar
Weld Wire Wire	Wire-Shapes

¹SMART Coil is a registered trademark of Dynamet Holdings, Inc. licensed to Dynamet Incorporated.

Description

Ti 6Al-4V ELI is the extra-low interstitial version of Ti 6Al-4V. Its content is arrived at by the careful selection of ingot raw materials with lower specified limits on iron and the interstitial elements carbon and oxygen. Ti 6Al-4V ELI has been the material of choice for many medical and dental applications due to its excellent biocompatibility, good fatigue strength, and low modulus. The ELI grade has superior damage tolerance (fracture toughness, fatigue crack growth rate) and better mechanical properties at cryogenic temperatures compared to standard grade Ti 6Al-4V. The high-purity alloy is also known as ASTM B348 Grade 23.

Key Properties:

- Alpha + beta alloy
- Higher purity version of Ti 6Al-4V
- Lower limits on iron, carbon, and oxygen than Ti 6Al-4V
- Excellent biocompatibility, fracture toughness, and fatigue crack growth rate
- Improved cryogenic performance than Ti 6Al-4V
- Good corrosion resistance, low modulus, and lightweight

Markets:

• Dental

Medical

Applications:

- Biomedical, particularly Bone fixation devices implantable components
 - Surgical clips
- Joint replacement Cryogenic vessels

info@cartech.com | 610 208 2000

Corrosion resistance

Ti 6Al-4V ELI spontaneously and immediately forms a stable, continuous, tightly adherent oxide film upon exposure to oxygen in air or water. This accounts for its excellent corrosion resistance in a variety of media. Ti 6Al-4V ELI is highly resistant to general corrosion in most aqueous solutions, as well as in oxidizing acids, chlorides (in the presence of water), and alkalis. Part of the reason for Ti 6Al-4V ELI's good biocompatibility is its corrosion resistance. Body fluids are basically chloride brines with a pH range from about 7.4 to acidic, other organic compounds-conditions under which Ti 6Al-4V ELI is highly immune to corrosion.

Stress-corrosion cracking (SCC) and crevice corrosion have been associated with exposure to halide ions at elevated temperatures. For this reason, it is general practice to avoid chlorinated solvents and chlorinated cutting fluids in processing titanium.

Titanium and its alloys, including Ti 6Al-4V ELI, are susceptible to hydrogen embrittlement. It is important to minimize hydrogen pickup during processing, particularly heat treating and acid pickling. Specifications for Ti 6Al-4V ELI (ASTM F 136) mill products typically specify a maximum hydrogen limit of 120 ppm.

IMPORTANT NOTE: The following 4-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors which affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish, and dissimilar metal contact.

Sodium Hydroxide	Moderate	Sulfuric Acid	Moderate
Sea Water	Excellent	Acetic Acid	Excellent
Humidity	Excellent	Salt Spray (NaCl)	Excellent

CORROSION RATE BY MEDIUM AND CONCENTRATION								
MEDIUM	CONCENTRATION TEMPERATURE			CORROSION RATE				
	%	°C	°F	MM/YR	MILS/YR			
Implanted in canine mandibular bone	-	—	-	0	0			
Hydrochloric acid	2	37.8	100.0	0-0.030	0-1.20			
Hydrochloric acid	10	37.8	100.0	0.508-1.020	20.0-40.0			
Hydrochloric acid	vapors	37.8	100.0	8.33-1.040	328.0-408.0			
Nitric acid	65	boiling	boiling	0.076-0.130	3.0-5.0			
Sulfuric acid	2	37.8	100.0	0.396-0.549	15.6–21.6			
Sodium hydroxide	25	boiling	boiling	0.046-0.051	1.8–2.0			

Physical properties

One advantage of Ti 6Al-4V ELI over other materials in implantable devices such as joint replacements is its low elastic modulus, which is more similar to that of bone than other biocompatible materials.

PROPERTY	At or From	English Units	Metric Units
DENSITY	—	0.160 lb/in ³	-
MODULUS OF ELASTICITY (E)	_	15.20 x 10 ³ ksi	_
MODULUS OF RIGIDITY (G)	—	5.90 x 10 ³ ksi	-
BETA TRANSUS	1765 to 1815°F	—	—
LIQUIDUS TEMPERATURE	2976 to 3046°F	—	-
SOLIDUS TEMPERATURE	2900 to 2940°F	—	—
	-418°F	782.2 ohm-cir-mil/ft	-
	-112°F	902.5 ohm-cir-mil/ft	—
ELECTRICAL RESISTIVITY	32°F	938.6 ohm-cir-mil/ft	-
	73°F	1053.0 ohm-cir-mil/ft	_

THERMAL CONDUCTIVITY

ELASTIC MODULUS AND SHEAR MODULUS BY MATERIAL								
MATERIAL	ELASTIC MODULUS		SHEAR MODULUS					
MATERIAL	GPa	PSIX 105	GPa	PSI X 105				
Human bone (typical values)	10-20	1.43–2.86	3–10	0.43–1.43				
Ti 6Al-4V ELI	105–116	15.2–16.8	41-45	5.9–6.5				
Stainless steels Co-Cr-Mo alloy	190–215	27.6-31.2	74-83	10.7–12.0				

THERMAL EXPANSION

Magnetic properties

MAGNETIC ATTRACTION

None

Typical mechanical properties

TYPICAL ROOM TEMPERATURE STRENGTHS							
	ksi	MPa					
Ultimate bearing strength	200–300	1380–2070					
Compressive yield strength	120–130	825–895					
Ultimate shear strength	70–100	480-690					

FATIGUE LIMITS

High-cycle fatigue limits for Ti 6Al-4V ELI are greatly influenced by both microstructure and surface conditions. Some generalized fatigue limits for annealed wrought material are provided below.

FATIGUE LIMIT RANGES (AXIAL FATIGUE, R = 0.06 TO 0.1)						
	ksi	МРа				
Smooth	60–100	400–700				
Notched (KT = 3)	20-40	140–270				

FRACTURE TOUGHNESS

The fracture toughness (KIc) of Ti 6Al-4V ELI lies between that of aluminum alloys and steels. The ELI grade should be specified whenever toughness is a priority, as its toughness is superior to that of standard grade Ti 6Al-4V. Microstructures that tend to have higher toughness are those with greater amounts of lamellar alpha + beta and coarser structures in general, such as those obtained by beta annealing.

FATIGUE STRENGTH OF TI 6AL-4V ELI AT LOW TEMPERATURES

TYPICAL ROOM TEMPERATURE MECHANICAL TENSILE PROPERTIES								
	CONDITION	0.2% YIELD STRENGTH		ULTIMATE TENSILE STRENGTH		ELONGATION IN 4D	REDUCTION OF AREA	
		ksi	MPa	ksi	MPa	%	%	
Minimum specified tensile properties	Millannealed	115	793	125	862	10	25	
	Mill annealed	120	827	130	896	15	45	
Typical tensile properties	Beta annealed	112	770	125	860	11	23	
	Recrystallization annealed	103	710	128	860	12	36	

YIELD STRENGTH AND FRACTURE TOUGHNESS OF TI 6AL-4V AND TI 6AL-4V ELI

Heat treatment

Ti 6Al-4V ELI wrought products are typically used in either a mill annealed, beta annealed or recrystallization annealed condition. The mill anneal retains the wrought alpha + beta structure and has been used to maximize strength for applications such as total joint replacements. The beta anneal results in a completely transformed structure and is used to maximize damage tolerance at some expense of ductility. The recrystallization anneal produces a partially transformed structure designed to optimize damage tolerance while maintaining ductility. Stress relief heat treatments are also used on Ti 6Al-4V ELI.

Ti 6Al-4V ELI, like other titanium alloys, has a high affinity for gases, including oxygen, nitrogen, and hydrogen. When Ti 6Al-4V ELI is heated in air, oxygen absorption results in the formation of an extremely hard, brittle oxygen-stabilized alpha phase layer known as alpha case.

Intermediate and final annealing of Ti 6Al-4V ELI is often performed in a vacuum or inert gas atmosphere to avoid alpha case formation and the associated material loss. Vacuum annealing can also be used to remove excess hydrogen, a process known as vacuum degassing. Parts to be vacuum heat treated must be thoroughly cleaned (see the descaling (cleaning) notes).

Millanneal	705 to 790°C (1300 to 1450°F) 1 to 4 hours. Air cool (or equivalent).
Stress relief	480 to 650°C (900 to 1200°F) 1 to 4 hours. Air cool (or equivalent).
Beta anneal	1035°C (1900°F) 30 minutes. Air cool plus. 730°C (1350°F) 2 hours. Air cool.
Recrystallization anneal	925°C (1700°F) 4+ hours. Furnace cool to 760°C (1400°F). At 55°C (100°F)/hour or slower, cool to 480°C (900°F). At 370°C (670°F)/hour or faster, air cool.
Workability	
Hot working	Ti 6Al-4V ELI can be hot worked by standard methods, such as hot rolling, forging, and hot pressing. Typically, hot working is done high in the alpha/beta temperature range, at approximately 870 to 950°C (1600 to 1740°F), although there are also applications for beta-range processing. Care must be taken to prevent the formation of excessive alpha case, and alpha case must be removed after processing. Hot forming of sheet is typically done at temperatures around 650°C (1200°F). Ti 6Al-4V ELI can also be successfully processed by superplastic forming, using the temperature range of 870 to 925°C (1600 to 1700°F)
"Warm" working	The yield strength of Ti 6Al-4V ELI drops off rapidly with temperature, making it readily formable at intermediate temperatures. For example, heating to just 427°C (800°F) results in approximately a 40% reduction in yield strength. Warm forming has been used extensively in the manufacture of many products, including aircraft components and medical devices.
Cold working	Ti 6Al-4V ELI can be cold drawn and extruded, although the cold workability is somewhat limited. Springback is an issue in room-temperature forming. Theoretically, over-bending alone can compensate for springback, but in practice, hot sizing is often used to correct for the variability in springback that occurs.
Machinability	Using the machinability rating system based on AISI B1112 steel, the machinability of Ti 6Al-4V ELI is rated at 22% of B1112. In general, low cutting speeds, heavy feed rates, and copious amounts of cutting fluid are recommended. Also, because of the strong tendency of titanium to gall and smear, feeding should never be stopped while the tool and workpiece are in moving contact. Non-chlorinated cutting fluids are generally used to eliminate any possibility of chloride-induced stress-corrosion cracking. It should be noted that titanium chips are highly combustible and appropriate safety precautions are necessary.

Typical feeds and speeds

The feeds and speeds in the following charts are conservative recommendations for initial setup. Higher feeds and speeds may be attainable depending on machining environment.

TURNING—SINGLE-POINT AND BOX TOOLS								
DEPTH OF CUT, IN	HIGH-SPEED	TOOLS		CARBIDE TOO	LS (INSERTS)			
	SPEED,	FEED,	FEED, TOOL		SPEED, FPM		TOOL	
	FPM	IPR	MATERIAL	BRAZED	THROW AWAY	IPR	MATERIAL	
ANNEALED								
.150	60	.010	T-15, M-42	145	195	.008	C-2	
.025	70	.005	T-15, M-42	170	225	.005	C-3	
AGED								
.150	55	.010	T-15, M-42	135	165	.008	C-2	
.025	65	.005	T-15, M-42	160	190	.005	C-3	

TURNING—CUT-OFF AND FORM TOOLS									
FEED, IPR								TOOL MATERIA	L
SPEED, FPM	PEED, FPM CUT-OFF TOOL WIDTH, IN FORM TOOL WIDTH, IN						HIGH-SPEED	CARBIDE	
	1/16	1/8	1/4	1/2	1	1-1/2	2	TOOLS	TOOLS
ANNEALED									
55	.001	.0015	.002	.0025	.0015	.001	.001	T-15, M-42	C-2
110	.001	.0015	.002	.0025	.0015	.001	.001	T-15, M-42	C-2
AGED									
40	.001	.0015	.002	.002	.0015	.001	.001	T-15, M-42	C-2
85	.001	.0015	.002	.002	.0015	.001	.001	T-15, M-42	C-2

ROUGH REAMING										
HIGH-SPEED TOOLS CARBIDE TOOLS			FEED, IPR, REAMER DIAMETER, IN							
SPEED, FPM	TOOL MATERIAL	SPEED, FPM TOOL MATERIAL			1/8	1/4	1/2	1	1-1/2	2
ANNEALED										
65	T-15, M-42	200	C-2		.003	.006	.010	.012	.014	.016
AGED										
30	T-15, M-42	160	C-2		.003	.007	.010	.012	.014	.016

DRILLING—HIGH-SPEED TOOLS									
	FEED, IPR								
SPEED, FPM	NOMINAL HOLE DIAMETER, IN								
	1/16	1/8	1/4	1/2	3/4	1	1-1/2	2	MATENIAL
ANNEALED									
35	-	.002	.004	.006	.007	.008	.010	.012	T-15, M-42
AGED									
30	-	.002	.003	.005	.006	.007	.009	.010	T-15, M-42

DIE THREADING — HIGH-SPEED TOOLS, ANNEALED AND AGED							
SPEED, FPM							
7 OR LESS, TPI	8 TO 15, TPI	16 TO 24, TPI	25 AND UP, TPI	TOOL MATERIAL			
5–20	9–25	10–30	15–40	M-1, M-2, M-7, M-10			

MILLING — END PERIPHERAL												
	HIGH-SPEED TOOLS							CARBIDE TOOLS				
DEPTH	SPEED, FPM	FEED, IN PER TOOTH				TOOL SPEED,		FEED, IPT				TOOL
OF CUT, IN		CUTTER DIAMETER, IN			SPEED, FPM		CUTTER DIAMETER, IN PER TOOTH					
		1/4	1/2	3/4	1-2			1/4	1/2	3/4	1-2	
						ANNEALED						
.050	90	.002	.003	.005	.006	T-15	260	.002	3	.006	.008	C-2
AGED												
.050	75	.002	.003	.004	.006	T-15	260	.002	.003	.006	.008	C-2

TAPPING—HIGH-SPEED TOOLS					
SPEED, FPM	TOOL MATERIAL				
ANNEALED					
7–20	M-1, M-7, M-10 Nitrided				
AGED					
3–10	M-1, M-7, M-10 Nitrided				

BROACHING—HIGH-SPEED TOOLS						
SPEED, FPM	CHIP LOAD, IN PER TOOTH	TOOL MATERIAL				
ANNEALED						
8	.003	T-15, M-42				
AGED						
5	.002	T-15, M-42				

When using carbide tools, surface speed feet/minute (SFPM) can be increased between 2 and 3 times over the high-speed suggestions. Feeds can be increased between 50 and 100%.

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

TYPICAL MINIMUM STOCK REMOVAL REQUIREMENTS FOR TI ALLOYS

AFTER THERMAL EXPOSURE IN AIR						
HEAT TREATMENT	THERMAL CYCLE	REMOVAL REQUIRED				
Mill anneal	760°C (1400°F) 2 hours	.038 mm (.0015 in)				
Beta anneal	1035°C (1900°F) 30 min + 730°C (1350°F) 2 hours	TBD by Dynamet				
Recrystallization anneal	925°C (1700°F) 4 hours + 760°C (1400°F) or higher 3 hours	TBD by Dynamet				

Additional machinability notes

Weldability

Ti 6Al-4V ELI can be welded using Ti 6Al-4V ELI filler metal. Inert gas shielding techniques must be employed to prevent oxygen pickup and embrittlement in the weld area. Gas tungsten arc welding is the most common welding process for Ti 6Al-4V ELI. Gas metal arc welding is used for thick sections. Plasma arc welding, spot welding, electron beam, laser beam, resistance welding and diffusion welding have all been used successfully in Ti 6Al-4V ELI welding applications

Other information

Wear resistance	Ti 6Al-4V ELI, and Ti alloys in general, have a tendency to gall and are not recommended for wear applications.
	Following heat treatment in air, it is extremely important to completely remove not only the surface scale, but the underlying layer of brittle alpha case as well. This removal can be accomplished by mechanical methods such as grinding or machining, or by descaling (using molten salt or abrasive) followed by pickling in a nitric/hydroflouric acid mixture.
	Titanium alloys are also susceptible to hydrogen embrittlement, and care must be taken to avoid excessive hydrogen pickup during heat treating and pickling/chemical milling.
Descaling (cleaning)	Final heat treatments on finished parts must be performed in a vacuum if machining or pickling is to be avoided.
	The cleanliness of parts to be vacuum heat treated is of prime importance. Oils, fingerprints, or residues remaining on the surface can result in alpha case formation, even in the vacuum atmosphere. In addition, chlorides found in some cleaning agents have been associated with SCC of titanium. Parts to be vacuum heat treated should be processed as follows: thorough cleaning using a non-chlorinated solvent or aqueous cleaning solution, followed by rinsing with copious quantities of deionized or distilled (not regular tap) water to remove all traces of cleaning agent, and finally, drying. Following cleaning, parts must be handled with clean gloves to prevent recontamination of the surface.
Technical articles	Higher Performance Material Solutions for a Dynamic Spine Market New, Precision Titanium ULTRABAR™ for Screw Machining Medical and Other Precision Parts

Additive manufacturing process notes

Ti 6Al-4V ELI specimens can be prepared for metallographic examination by standard methods. Abrasive cutting, especially of small samples, is not recommended due to the tendency to "bum" the surface and produce alpha case. Kroll's reagent (1 to 3% hydrofluoric acid plus 2 to 6% nitric acid in water) is commonly used for determination of general microstructure. For detection of alpha case, Kroll's etch is followed by an ammonium bifluoride solution that stains the entire sample with the exception of any alpha case. Some typical microstructures are illustrated below.

For additional information, please contact your nearest sales office: info@cartech.com | 610 208 2000

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make their own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings LLC, a subsidiary of Carpenter Technology Corporation.