

CarTech[®] Free-Cut Invar "36"® Alloy

Identification

UNS Number

• K93602/K93050

	Type Analysis								
Single figures are nominal except where noted.									
Carbon	0.05 %	Manganese	0.90 %						
Silicon	0.35 %	Nickel	36.00 %						
Cobalt	0.20 %	Selenium	0.20 %						
Iron	Balance								

General Information

Description

CarTech Free-Cut Invar "36" alloy is a free-machining 36% nickel-iron alloy possessing a rate of thermal expansion approximately one-tenth that of carbon steel at temperatures up to 400°F (204°C).

Applications

This alloy has been used for machined parts whose dimensional changes due to temperature variation must be minimized such as in radio and electronic devices, aircraft controls, etc.

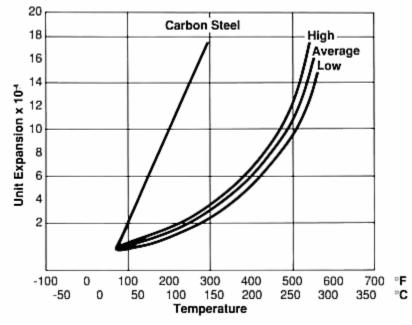
CarTech Free-Cut Invar "36" alloy has also been used in conjunction with high expansion alloys in applications where a motion is desired when the temperature changes, such as in rod and tube assemblies for temperature regulators.

Corrosion Resistance

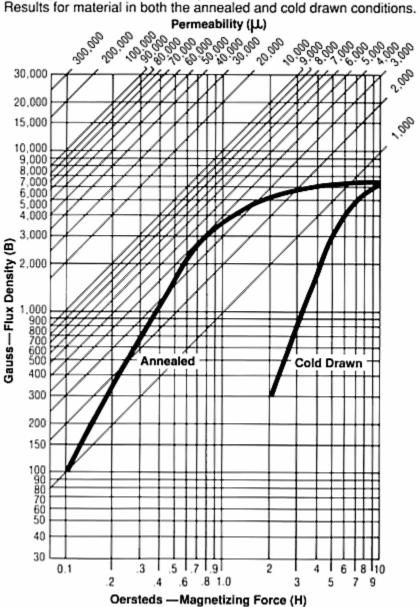
Important Note: The following 4-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors which affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish and dissimilar metal contact.

Humidity

Good

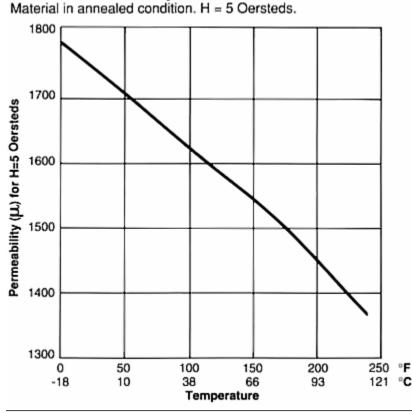

Properties Physical Properties Specific Gravity 8.05 Density 0.2910 lb/in³ Mean Specific Heat 0.1230 Btu/lb/°F Mean CTE 77 to 212°F 0.910 x 10 - in/in/°F 77 to 302°F 1.32 x 10 -₀ in/in/°F 77 to 392°F 1.69 x 10 - in/in/°F 77 to 482°F 2.34 x 10 - in/in/°F 77 to 572°F 3.26 x 10 -₀ in/in/°F

Temp	erature	Coefficient		
77°F to 25°C to		x 10 ⁴ /°F	x 10 ⁴ /°C	
212	100	0.91	1.64	
302	150	1.32	2.38	
392	200	1.69	3.04	
482	250	2.34	4.21	
572	300	3.26	5.87	


Mean coefficient of thermal expansion (from R.T.)

Thermal Conductivity	72.60 BTU-in/hr/ft²/°F
Modulus of Elasticity (E)	
Annealed Bar	20.5 x 10 ³ ksi
Cold Drawn Bar	21.5 x 10 ³ ksi
Electrical Resistivity (70°F)	495.0 ohm-cir-mil/ft
Temperature Coeff of Electrical Resist (70 to 212°F)	6.00 x 10
Curie Temperature	535 °F
Melting Range	2600 °F

Comparative Expansion Curves - Free-Cut Invar "36" Alloy vs. Carbon Steel


Magnetic Properties

DC Magnetization Permeability Curves - Free-Cut Invar "36" Alloy Results for material in both the annealed and cold drawn conditions.

Permeability (Gauss/Oersted) vs. Temperature Characteristics -

Free-Cut Invar "36" Alloy

Typical Mechanical Properties

Typical Mechanical Properties - Free-Cut Invar "36" Alloy

		•		-				
Tensile Strength		trength Strength % Redu		9/ Deduction			% Elongation in 2" (50.8 mm)	Hardness Rockwell B
ksi	MPa	ksi	MPa	III Alea	11 2 (30.0 1111)	Hockment		
Cold Drawn Bars								
90	621	70	483	60	20	90		
Annealed Bars								
65	448	40	276	65	35	70		

Heat Treatment

Heat Treatment for Optimal Dimensional Stability:

The presence of stress causes very slight changes in dimensional stability with respect to time and temperature. This change can be detected only with exceedingly sensitive devices. To assure the best dimensional stability use the following heat treatment.

Heat to 1500°F (815°C) and hold at heat for 30 minutes per inch of thickness followed by water quenching. Reheat to 600°F (315°C) and hold for one hour, cool in air.

Annealing

Heat to 1450°F (790°C) and hold at heat 30 minutes per inch of thickness, air cool.

Heating to temperatures above 1000°F (540°C) relieves the presence of cold work stresses. The higher the temperature, the lower the annealed hardness as illustrated in the hyperlink entitled "Effect of Annealing on Hardness".

Effect of Annealing on Hardness - Free-Cut Invar "36" Alloy

Specimen held 5 minutes at indicated temperature.

	Temperature Air Treat					
۰F	O°	Hardness				
1200	650	87/88				
1500	815	77/78				
1800	980	70/71				
1900	1040	66/68				

Holding at heat for longer periods will result in even lower hardnesses.

Workability

Forging

The principal precaution to observe in forging is to heat quickly and to avoid soaking in the forge furnace. Long soaking may result in a checked surface due to absorption of sulfur from the furnace atmosphere. A forging temperature of 2150/2200°F (1180/1200°C) is desirable.

Cold Heading

Free-Cut Invar "36" alloy may be swaged or cold upset.

Machinability

Free-Cut Invar "36" alloy machines easily with a brittle chip. In turning operations, speeds of 85/120 sfm (0.43/0.61 m/s) can be used. Moderate cold working slightly increases the machinability.

Following are typical feeds and speeds for Free-Cut Invar "36" alloy.

	Hig	h-Speed To	ools		Car	bide			
Depth of	Grand	Ford			d, fpm	Fred			
Cut, in.	Speed, fpm	Feed, ipr	Tool Material	Brazed	Throw Away	Feed, ipr	Tool Material		
.150	80	.015	M-33	275	300	.015	C-2		
.025	100	.007	M-41-47	320	365	.007	C-3		

Turning-Single Point and Box Tools

Turning—Cut-Off and Form Tools

		Feed, ipr							
Speed, fpm	Cut-Off Tool Width, Inches			Tool Material					
	1/16	1/8	1/4	1/2	1	1-1/2	2	1	
65	.001	.0015	.002	.002	.0015	.001	.001	M-2	
220	.004	.0055	.007	.005	.004	.0035	.0035	C-2	

Drilling

	Feed, ipr									
Speed, fpm	Nominal Hole Diameter, Inches								Tool Material	
ipin -	1/16	1/8	1/4	1/2	3/4	1	1-1/2	2	material	
50	.001	.002	.004	.007	.010	.012	.015	.018	M-1; M-10	

Tapping

Speed, fpm	Tool Material
10-15	M-1; M-7; M-10

Die Threading

	Speed			
7 or Less	8 to 15	16 to 24	25 and up, T.P.I.	Tool Material
10-20	15-25	20-35	25-40	M-1; M-2; M-7; M-10

Milling-End Peripheral

	High-Speed Tools						Carbide Tools						
Depth		Feed	-Inche	es per 1	rooth	Teel	and Ground	Feed—Inches per Tooth				Tool	
of Cut In.	Speed, fpm	Cutte	r Diam	eter, in	ches	Tool Speed, Material fpm	Material fpm		Cutter Diameter Inches				
	4	1/4	1/2	3/4	1-2			1/4	1/2	3/4	1-2	Material	
.050	85	.001	.002	.003	.004	M-42	280	.001	.002	.004	.005	C-2	

Additional Machinability Notes

Figures used for all metal removal operations are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

Grinding and Polishing

A silicon carbide wheel is desirable, preferably a soft wheel which will wear without loading. For finish grinding, a satisfactory grade to start with is No. 80 grit.

Weldability

Free-Cut Invar "36" alloy can be welded by the conventional methods. Caution must be taken not to overheat the molten metal. This will avoid spattering of the molten metal and pits in the welded area. When filler rod is required, Invarod has been used.

Brazing

Silver and zinc-free alloys have been used for brazing Free-Cut Invar "36" alloy. Free-Cut Invar should be annealed prior to brazing. Joints should be designed to avoid placing this material in tension during brazing.

Plating

Free-Cut Invar "36" alloy can be chromium, cadmium and nickel plated or zinc coated by the usual methods for ferrous alloys.

Other Information							
Applicable Specification	ıs						
• ASTM F1684							
Forms Manufactured							
Bar-Flats	Bar-Squares						
• Billet	• Wire						
Technical Articles							
• After 100 Years, the Uses	for Invar Continue to Multiply						
• Invar Alloy-There's Profit t	o be Made in Machining This Popular, High Tech Material						

Selecting Controlled Expansion Alloys

Disclaimer:

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation Copyright © 2020 CRS Holdings Inc. All rights reserved.

Visit us on the web at www.cartech.com

Edition Date: 3/15/04