

CarTech[®] Custom 450[®] Stainless

Identification

UNS Number

• S45000

Type Analysis Single figures are nominal except where noted. Carbon (Maximum) Manganese (Maximum) 0.05 % 1.00 % Phosphorus (Maximum) 0.030 % Sulfur (Maximum) 0.030 % Silicon (Maximum) Chromium 1.00 % 14.00 to 16.00 % Nickel 5.00 to 7.00 % Molybdenum 0.50 to 1.00 % Copper Columbium/Niobium 1.25 to 1.75 % 8 X C Minimum Iron Balance

General Information

Description

CarTech Custom 450 stainless is a martensitic age-hardenable stainless steel which exhibits very good corrosion resistance (similar to that of CarTech 304 stainless) with moderate strength (similar to that of Stainless Type 410). The alloy has a yield strength somewhat greater than 100 ksi (689 MPa) in the annealed condition, but is easily fabricated. A single-step aging treatment develops higher strength with good ductility and toughness.

This stainless can be machined, hot-worked, and cold-formed in the same manner as other martensitic age-hardenable stainless steels. A particular advantage is ease of welding and brazing.

CarTech Custom 450 stainless is generally supplied in the annealed condition, requiring no heat treatment by the user for many applications. Because it has corrosion resistance like CarTech 304 stainless but three times the yield strength, it has been used in applications where CarTech 304 was not strong enough. On the other hand, it has also replaced Type 410 stainless directly on a strength basis where CarTech 410 had insufficient corrosion resistance. Mechanical properties will depend on the aging temperature selected.

Selection

There are a number of other alloys that are available for specific applications.

Grade: Custom 630 stainless

Characteristic: Similar to Custom 450 stainless, but must be aged prior to use. It cannot be used in the solution-annealed condition.

Grade: 15Cr-5Ni stainless

Characteristic: Similar to Custom 630 stainless, but has better transverse ductility and toughness.

Grade: Pyromet® Alloy 350

Characteristic: Depending on heat treatment, can have an austenitic structure for best formability, or a martensitic structure, for higher strength up to intermediate elevated temperatures.

Grade: Pyromet Alloy 355

Characteristic: Similar to Pyromet Alloy 350 but with a lower ferrite content.

Elevated Temperature Use

Custom 450 stainless shows excellent resistance to oxidation up to approximately 1200°F (649°C). Significant aging occurs when annealed material is heated to 700°F (371°C) and higher.

Long-term exposure to elevated temperatures can result in reduced toughness in precipitation hardenable stainless steels. The reduction in toughness can be minimized in some cases by using higher aging temperatures. Short exposures to elevated temperatures can be considered, provided the maximum temperature is at least 50°F (28°C) less than the aging temperature.

Corrosion Resistance

Custom 450 stainless has resisted atmospheric corrosion including salt water atmospheres. It shows excellent resistance to rusting and pitting in 5% and 20% salt spray at 95°F (35°C). Tests in hot concentrated nitric acid show corrosion resistance approaching that of Type 304.

Optimum corrosion resistance for this alloy is obtained in the annealed condition. However, age hardening results in only a slight change.

For optimum corrosion resistance, surfaces must be free of scale, lubricants, foreign particles, and coatings applied for drawing and heading. After fabrication of parts, cleaning and/or passivation should be considered.

Sour Service:

Custom 450 stainless has acceptable resistance to sulfide stress cracking at Rockwell C 31 maximum hardness per NACE MR-01-75, "Sulfide Stress Cracking Resistant Metallic Materials for Oil field Equipment." Refer to the current document for details on acceptable conditions. A comparison is made for alloys heat treated in accordance with MR-01-75 requirements. Threshold stresses are intended for comparative purposes only and should not be used as design stress level.

Important Note: The following 4-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors which affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish and dissimilar metal contact.

Nitric Acid	Good	Sulfuric Acid	Restricted
Phosphoric Acid	Restricted	Acetic Acid	Moderate
Sodium Hydroxide	Moderate	Salt Spray (NaCl)	Good
Sea Water	Restricted	Sour Oil/Gas	Moderate
Humidity	Excellent		

Effect of Aging on Typical Corrosion Resistance in Acid Solutions

Rockwell Condition C		48-Hour Corrosion Rate in mpy				
contaition	Hardness	20% nitric acid at 200°F (93°C)	5% sulfuric acid at 75°F (24°C)	50% acetic acid boiling		
А	30	2	1	1		
H 900	41	2	1	1		
H 1000	37	2	3	1		
H 1150	30	2	9	1		

Typical Corrosion Resistance of Various Stainless Steels in Acid Solutions

Rockwell		48-Hour Corrosion Rate in mpy			
Alloy	Hardness	20% nitric acid at 200°F (93°C)	5% sulfuric acid at 75°F (24°C)	50% acetic acid boiling	
Type 410	C 45	8	1732*	266*	
Type 431	C 45	3	1402*	43*	
17Cr-4Ni	C 42	2	2	3	
Custom 450	C 41	2	1	1	
Type 304	B 80	1	11	1	

*Several or all of subsequent 48-hour test periods showed nil rate.

Typical Results for Precracked Cantilever Beam Stress-Corrosion-Cracking Tests	
Condition H 900	

Test Made	Stress I	ntensity	The second second	
Test Media	ksi Vīn	MPa √m	Time to Fail	
Air	22.5	24.7	_	
Air	23.7	26.0		
3.5% NaCl (pH 3.6) at 75°F (24°C) 3.5% NaCl (pH 3.6)	18.7	20.6	No failure in 1800-hr. test	
at 75°F (24°C)	20.6	22.6	No failure in 1200-hr. test	

Typical Results for U-Bend Stress-Corrosion Tests

Form	Condition	Rockwell C Hardness	Specimen Orientation	No. of Specimens Tested	Environment	Results
0.105'' (2.67mm) strip	н 900	43	Longitudinal to rolling direction	5	5% Salt Spray 95°F (35°C)	No cracking in 290-day test
0.105 ¹¹ (2.67mm) strip	Н 900	43	Transverse	4	5% Salt Spray 95°F (35°C)	No cracking in 290-day test
0.105'' (2.67mm) strip	H 100D	39	Longitudinal	5	5% Salt Spray 95°F (35°C)	No cracking in 290-day test
0.105" (2.67mm) strip	H 100D	39	Transverse	4	5% Salt Spray 95°F (35°C)	No cracking in 290-day test
1%;" (26.2mm) round bar	н 900	40	Longitudinal	5	5% Salt Spray 95°F (35°C)	No cracking in 220-day test
1%;" (26.2mm) round bar	H 1000	37	Longitudinal	5	5% Salt Spray 95°F (35°C)	No cracking in 220-day test
0 125'' (3.18mm) strip	н 900	41	Transverse	5	Kure Beach, 80' Lot	No cracking in 15 years

Typical Stress-Corrosion-Cracking Resistance per NACE TM-01-77 (a)

Alloy	Condition	0.2% Yield Strength		Yield Tensile		nsile	Rockwell C Hardness	Threshold Stress Level (b) as Percent of Yield	
		ksi	MPa	ksi	MPa		Strength		
Custom 450 17Cr-4Ni Type 410	H 1150 H 1150M Hardened and Tempered 1200°F (649°C) + 1150°F (621°C)	82 107 94	565 738 648	132 132 115	910 910 793	28 29 201⁄2	52 30 15		

(a) 5 w/o sodium chloride + 0.5 w/o acetic acid solution continuously purged with hydrogen sulfide at 75°F (24°C)

(b) The maximum tensile strength at which no failures occurred in 720 hours.

References:

⁽¹⁾Burns, D.S., "Laboratory Test for Evaluating Alloys for H₂S Service," H₂S Corrosion In Oil and Gas Production—A Compilation of Classic Papers, eds. R.N. Tuttle and R.D. Kane, NACE, Houston, Texas, 1981.

⁽²⁾ Pressouyre, G.M., Bretin, L., and Zmudzinski, C., "New Steels for Use in H₂S Environments," Corrosion 81, Paper No. 181, April 1981.

Typical Stress-Corrosion-Cracking Resistance in 3.5% NaCl (pH5.2), at 75°F (24°C) Condition H 900

Applie	d Stress	Results	
ksi	MPa	Results	
169 140	1165 676	No failure in 1100-hour test No failure in 1100-hour test	

Properties Physical Properties Specific Gravity Condition A 7.75 Condition H 900 7.76 Density Condition A 0.2800 lb/in³ Condition H 900 0.2800 lb/in³ Mean Specific Heat (73 to 216°F, Condition H 900) 0.1140 Btu/lb/°F Mean CTE 75 to 200°F, Condition A 5.88 x 10 - in/in/°F 75 to 300°F, Condition A 5.62 x 10 -₀ in/in/°F 75 to 400°F, Condition A 5.68 x 10 - in/in/°F 75 to 500°F, Condition A 5.80 x 10 - in/in/°F 75 to 600°F, Condition A 5.91 x 10 -₀ in/in/°F 75 to 700°F, Condition A 5.98 x 10 - in/in/°F 75 to 800°F, Condition A 6.09 x 10 - in/in/°F 75 to 900°F, Condition A 6.13 x 10 - in/in/°F 75 to 1000°F, Condition A 6.08 x 10 -6 in/in/°F 6.17 x 10 - in/in/°F 75 to 1100°F, Condition A 75 to 200°F, Condition H 900 6.00 x 10 -6 in/in/°F 75 to 300°F, Condition H 900 5.80 x 10 -₀ in/in/°F 75 to 400°F, Condition H 900 5.91 x 10 -6 in/in/°F 75 to 500°F, Condition H 900 6.04 x 10 - 6 in/in/°F 6.22 x 10 -6 in/in/°F 75 to 600°F, Condition H 900 75 to 700°F, Condition H 900 6.25 x 10 -6 in/in/°F 75 to 800°F, Condition H 900 6.37 x 10 - in/in/°F 75 to 900°F, Condition H 900 6.48 x 10 - in/in/°F 75 to 1000°F, Condition H 900 6.53 x 10 - in/in/°F 75 to 1100°F, Condition H 900 6.53 x 10 -₀ in/in/°F

Mean Coefficient of Thermal Expansion

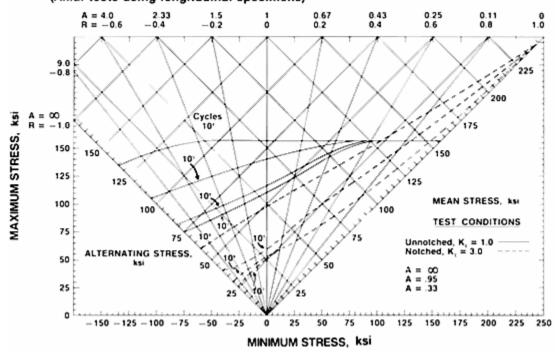
Temperature		Condition A		Condition H 900	
75°F to	24°C to	10-4/°F	10*/K	10*/°F	10-4/K
200	93	5.88	10.58	6.00	10.80
300	149	5.62	10.12	5.80	10.44
400	204	5.68	10.22	5.91	10.64
500	260	5.80	10.44	6.04	10.87
600	316	5.91	10.64	6.22	11.20
700	371	5.98	10.76	6.25	11.25
800	427	6.09	10.96	6.37	11.47
900	482	6.13	11.03	6.48	11.66
1000	538	6.08	10.94	6.53	11.75
1100	593	6.17	11.11	6.53	11.75

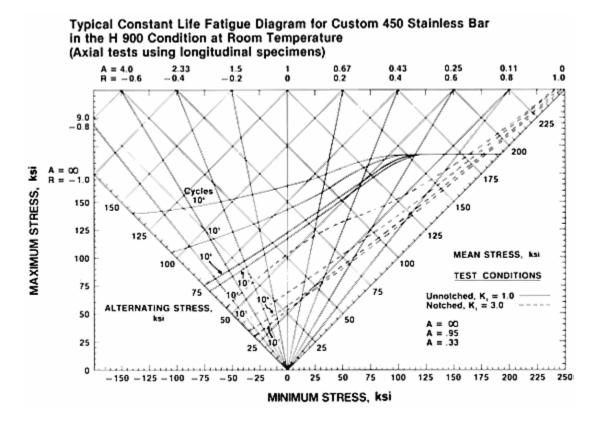
CarTech[®] Custom 450[®] Stainless

Thermal Conductivity	
73°F, Condition H 900	104.0 BTU-in/hr/ft²/°F
212°F, Condition H 900	110.0 BTU-in/hr/ft²/°F
392°F, Condition H 900	126.0 BTU-in/hr/ft²/°F
572°F, Condition H 900	138.0 BTU-in/hr/ft²/°F
752°F, Condition H 900	147.0 BTU-in/hr/ft²/°F
932°F, Condition H 900	169.0 BTU-in/hr/ft²/°F

Thermal Conductivity - Condition H 900

	est erature	Btu-in/ft2-h-°F	W/m•K
°F	"C		
73	23	104	15.0
212	100	110	16.4
392	200	126	18.2
572	300	138	19.9
752	400	147	21.3
932	500	169	24.4


Poisson's Ratio (Condition H 900)


Modulus of Elasticity (E)	
Condition A	28.0 x 10 ∘ ksi
Condition H 900	29.0 x 10 ³ ksi
Modulus of Rigidity (G) (Condition H 900)	11.2 x 10 ₃ ksi
Electrical Resistivity	
70°F, Condition A	597.0 ohm-cir-mil/ft
70°F, Condition H 900	509.0 ohm-cir-mil/ft

0.290

Typical Mechanical Properties

Typical Constant Life Fatigue Diagram for Custom 450 Stainless Bar in the H 1050 Condition at Room Temperature (Axial tests using longitudinal specimens)

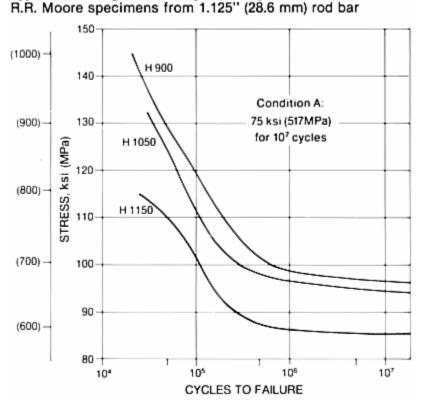
Typical Cryogenic and Elevated Temperature Mechanical Properties 1" (25.4 mm) round bar

Condition	Te Tempe		Yi	2% eld ngth	Ter	mate Isile Ingth	Ter Stre	ntch Insile Ingth Ingth	% Elongation In 4D	% Reduction of Area		
	۴F	°C	ksi	MPa	ksi	MPa	ksi	MPa			ft-lb	J
A H 900 H 1050 H 1150	-320	-196	179 249 205 136	1234 1717 1413 938	207 260 223 219	1427 1793 1538 1510	310 85 226 249	2137 586 1558 1717	17 5 22 30	47 8 58 55	30 1 5 36	41 1 7 49
A H 900 H 1050 H 1150	-100	-73	128 207 167 96	883 1427 1151 662	216 180	1089 1489 1241 1145	257 283	1731 1772 1951 1655	15 16 21 25	50 56 65 67	68 4 41 66	92 5 56 89
A H 900 H 1050 H 1150	0	-18	120 194 160 93	827 1338 1103 641	205 170	1020 1413 1172 1062	235 306 267 220	1620 2110 1841 1517	15 15 21 24	53 57 66 69	90 16 64 85	122 22 87 115
H 900 H 950 H 1050 H 1150	600	316	138 140 125 97	951 965 862 669	160 152 133 112	1103 1048 917 772			12 12 14 17	48 49 54 62	40 50 82 103	54 68 111 140
H 900 H 950 H 1050 H 1150	800	427	131 130 115 92	903 896 793 634	150 143 121 106	1034 986 834 731			12 12 13 16	45 45 49 57	42 54 82 98	57 73 111 133
H 900 H 950 H 1050 H 1150	1050	566	76 78 70 67	524 538 483 462	84 85 78 81	579 586 538 559		 	24 27 30 26	75 74 77 68	66 67 83 97	89 91 113 132

Typical Double Restrained Shear Strength

1-1/16" (27 mm) Rd. to 12" (305 mm) Sq. sections, Longitudinal

Te	est		Con	dition		
Tempe	erature	H	900	H 1050		
°F	°C	ksi	MPa	ksi	MPa	
-100	-73	138	952	117	807	
R	Т	122	841	100	690	
400	204	103	710	87	600	
600	316	95	655	80	552	
800 427		85	586	71	490	


Typical Double Restrained Shear Strength in Condition A at RT in 87 ksi (600 MPa)

Typical Room Temperature Mechanical Properties 1" (25.4 mm) round bar

Condition	Yi	2% eld ngth	Ter	mate Isile Ingth	Ter Stre	tch isile ngth = 10	% Elongation in 4D	% Reduction of Area	Rockwell C Hardness	Charpy V-Notch Impact Strength	
	ksi	MPa	ksi	MPa	ksi	MPa				ft-lb	J
A	118	814	142	979	221	1524	13	50	28	98	133
H 900	188	1296	196	1351	298	2055	14	56	421/2	40	54
H 950	184	1269	187	1289	288	1986	16	58	411/2	47	64
H 1000	169	1165	173	1193	273	1882	17	63	39	51	69
H 1050	152	1048	160	1103	255	1758	20	66	37	69	94
H 1150	92	634	142	979	209	1441	23	69	28	97	132

Room-Temperature Mechanical Properties – Custom 450® Stainless 0.58" thick strip_____

	tion		Yield ngth		mate Strength	%	Rockwell
Condition	Orientation	ksi	MPa	ksi	MPa	Elongation in 2" (50.8 mm)	Hardness (HRC)
Strand	L	109	751	140	965	7	28.5
Annealed	Т	111	765	142	979	7	-
	L	185	1275	190	1310	8	41.5
H 900	Т	187	1289	192	1323	7	-
	L	177	1220	179	1234	9	40.5
H 950	Т	179	1234	181	1248	8	-
	L	164	1130	167	1151	11	38
H 1000	Т	164	1130	167	1151	10	-
	L	148	1020	156	1075	12	36
H 1050	Т	148	1020	156	1075	11	-
	L	117	806	141	972	14	33
H 1100	Т	120	827	144	993	13	-
	L	87	600	140	965	14	30
H 1150	Т	90	620	140	965	13	-

Typical Rotating Beam Fatigue Strength

Heat Treatment

Solution Treatment

Condition A (Solution Treated or Annealed)

Heat to 1875/1925°F (1024/1052°C), hold one hour at heat and cool rapidly. Water quenching or oil quenching is preferred for optimum response to aging, but air quenching is suitable for thin sections.

Custom 450 stainless will normally be supplied from the mill in Condition A, ready for service or for subsequent age-hardening.

Average Size Change (Contraction) Solution annealed to aged condition

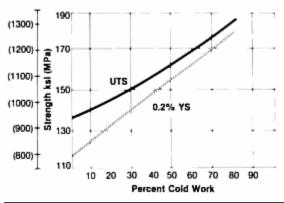
0	Contraction in./in. (m/m)					
Condition	Longitudinal	Transverse				
H 900	0.0003	0.0007				
H 1000	0.0006	0.0008				
H 1150	0.0038	0.0040				

Age

Condition H 900, H 950, H 1000, H 1050, H 1150 (Precipitation or Age Hardenend)

Tensile strength and yield strength are increased by aging at 900/1050°F (482/566°C) for 4 hours, followed by air cooling. The 900°F (482°C) age produces the optimum combination of strength, ductility, and toughness. Overaging at temperatures up to 1150°F (621°C) increases the ductility and decreases strength.

Workability


Hot Working

This alloy is easily hot worked in the temperature range of 1650/2300°F (900/1260°C). The optimum hot-working range is 2100/2150°F (1150/1177°C) for the best combination of ease of working and fine grain size. Cool forgings in air to room temperature and anneal.

Cold Working

The work-hardening rate of Custom 450 alloy is relative low, permitting a good deal of cold reduction without intermediate annealing. Deep-drawing or stretching operations with sharp bends which produce localized elongation are to be avoided.

Effect of Cold Work on Typical Tensile Strengths

Machinability

Custom 450 stainless has been machined successfully using the same practices employed with other martensitic stainless steels at comparable hardness levels.

Following are typical feeds and speeds for Custom 450 stainless.

Typical Machining Speeds and Feeds – Custom 450® Stainless The speeds and feeds in the following charts are conservative recommendations for initial setup. Higher speeds and feeds may be attainable depending on machining environment.

Turning-											
	High	Speed Too	ols		Car	rbide Tools	:				
Depth of Cut	Tool	Speed	Feed	Tool		Speed (fpr	n)	Feed			
(Inches)	Material	(fpm)	(ipr)	Material	Brazed	Throw Away	Coated	(ipr)			
	Solution Treated										
.150	M2, T5,	70	.015	C6	250	310	400	.015			
.025	T15	90	.007	C7	300	350	475	.007			
	•		. Aged H	i1150 H1100							
.150	M2, T5,	65	.015	C6	235	290	350	.015			
.025	T15	75	.007	C7	250	310	425	.007			
			. Aged H	i1000 H1050							
.150	T15, M41,	55	.015	C6	220	250	325	.010			
.025	M42, M43,	65	.007	C7	270	300	375	.005			
	M44										
			Aged	H900 H950							
.150	T15, M41,	35	.010	C6	135	170	225	.010			
.025	M42, M43,	40	.005	C7	170	200	260	.005			
	M44										

Turning—Single-point and Box Tools

Turning—Cut-Off and Form Tools

Tool N	Tool Material					Feed (ip	or)			
High	Car-	Speed	Cut-C	ff Tool Wid	tth (Inches)		Form Tool	Width (Inc	hes)	
Speed Tools	bide Tools	(fpm)	1/16	1/8	1/4	1/2	1	1 ½	2	
	Solution Treated									
M2,		70	.001	.0015	.002	.0015	.001	.001	.0005	
T15	C6	200	.003	.0045	.006	.003	.0025	.0025	.0015	
	Aged H1100 H1150									
M2,		75	.001	.0015	.002	.0015	.001	.001	.0005	
T15	C6	200	.003	.003	.0045	.003	.002	.002	.002	
				Aged H10	i00 H1050				.	
T15,		60	.001	.001	.0015	.0015	.001	.001	.0005	
M42	C6	155	.003	.003	.0045	.003	.002	.002	.002	
	Aged H900 H950									
T15,		30	.001	.001	.0015	.0015	.001	.001	.0005	
M42	C6	110	.0025	.0025	.004	.0025	.0015	.0015	.0015	

Rough Reaming

High S	High Speed Carbide Tools				Re	Feed amer Diam	(ipr) neter (inch	es)	
Tool Material	Speed (fpm)	Tool Material	Speed (fpm)	1/8	1/4	1/2	1	1 1/2	2
				Solution	Treated				
M7	60	C2	190	.003	.005	.008	.011	.015	.018
		-		Aged H110	00 H1150				
M7	65	C2	200	003	.005	.008	.011	.015	.018
				Aged H100	DO H1050				
T15	45	C2	150	003	.004	.006	.010	.013	.016
	Aged H900 H950								
T15	35	C2	125	.001	.001	.001	.001	.001	.001

Drilling

<u>ernning</u>										
			I	High Spee						
Tool Speed Feed (inches per revolution) Nominal Hole Diameter (inches)										
Material	(fpm)			NOUII	а пое о	ameter (in	cnesj			
Material	(ipin)	1/16	1/8	1/4	1/2	3/4	1	1 1/2	2	
	Solution Treated									
M1, M10	50	.001	.002	.004	.007	.008	.010	.012	.015	
			A	ged H110	0 H1150					
T15, M42	45	.001	.002	.004	.007	.008	.010	.012	.015	
			A	ged H100	0 H1050					
T15, M42	35	-	.002	.004	.007	.008	.010	.012	.015	
	Aged H900 H950									
T15, M42	25	-	.001	.002	.003	.004	.004	.004	.004	

Die Threading

Die Hineading									
	F	PM for High Speed T	ools						
Tool Material	7 or less, tpi	8 to 15, tpi	16 to 24, tpi	25 and up, tpi					
Solution Treated									
M1, M2, M7, M10	5-12	8–15	10-20	15 – 25					
Aged									
T15, M42	4-8	6-10	8-12	10-15					

Milling, End-Peripheral

			High Spee	ed Tools				C	arbide	Tools		
눈凝			~	Feed (_		Feed (ipt) Cutter Diameter (in)			
158	- 음 은	26	Cui	ter Dian	ieter (in	/	금연	1221	Cu	tter Dia	meter (in)
Depth of Cut (inches)	Cut (inct Tool Material Speed (fbm)		1/4	1/2	3/4	1-2	Tool Material	Speed (fpm)	1/4	1/2	3/4	1-2
	Solution Treated											
.050	M2, M7	85	.001	.002	.003	.004	C2	275	.001	.002	.004	.006
	Aged H1100 H1150											
.050	M2, M7	80	.001	.002	.003	.004	C2	225	.001	.002	.004	.006
					Aged H	1000 H1	050					' I
.050	M2, M7	70	.0005	.001	.002	.003	C2	195	.001	.002	.003	.004
	1				Aged I	, H900 H9	50					
.050	M2, M7	60	.0005	.001	.002	.003	C2	90	.001	.002	.003	.004

Tapping

Broaching

тарріну			Dioaching				
High Speed	Tools			High Speed Tool	s		
Tool Material	Speed (fpm)		Tool Material	Speed (fpm)	Chip Load (ipt)		
Solution Tr	eated		Solution Treated				
M1, M7, M10		T15, M42 15 .002					
Aged H1100	H1150		ļ A	50			
M1, M7, M10	15 – 20		T15, M42	10	.002		
Aged H1000	H1050		Aged H1000 H1050				
M1, M7, M10	10 - 20		T15, M42	8	.002		
Aged H900	H950		Aged H900 H950				
M1, M7, M10 Nitrided 5 – 15			T15, M42	8	.002		

Additional Machinability Notes

When using carbide tools, surface speed feet/minute (sfpm) can be increased between 2 and 3 times over the high speed suggestions. Feeds can be increased between 50 and 100%.

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

Weldability

Carpenter Custom 450 stainless can be satisfactorily welded by the shielded fusion and resistance welding processes. Oxyacetylene welding is not recommended, since carbon pickup in the weld may occur. Unlike other martensitic stainless steels, no preheating is required to prevent cracking during the welding of this alloy. Normally, the alloy is welded in the solution-annealed condition; however, where high welding stresses are anticipated, it may be advantageous to weld in the overaged (H 1150) condition. If welded in the solution-annealed condition, the alloy can be used as welded or can be aged directly to the desired strength level after welding. However, the optimum combination of strength, ductility and corrosion resistance is obtained by solution annealing the welded part prior to use of aging. If welded in the overaged condition, the part must be solution annealed before aging.

Brazing

The brazing temperature should coincide with the annealing temperature range so that reannealing is not necessary. Brazing materials suitable for Type 304 should be used. See ASTM B 260.

Other Information

Descaling (Cleaning)

Descaling following forging and annealing can be accomplished by acid cleaning or grit blasting. The acid treatment consists of 2 minutes in 50% by volume muriatic acid at 180°F (82°C), followed by 4 minutes in a mixture of 15% by volume nitric acid, plus 3% by volume hydrofluoric acid at room temperature. Water rinse and desmut in 20% by volume nitric acid at room temperature. Repeat cleaning procedure as necessary but decrease the times by 50% (i.e., 1 and 2 minutes, respectively).

The heat tint from aging can be removed by polishing, vapor blasting or pickling 4 or 6 minutes in a mixture of 15% by volume nitric acid, plus 3% by volume hydrofluoric acid, followed by a water rinse. Repeat the acid cleaning procedure if necessary, but decrease the time by 2 to 3 minutes. Desmut in 20% by volume nitric acid at room temperature.

After acid cleaning, bake 1 to 3 hours at 300/350°F (149/177°C) to remove hydrogen.

Applicable Specifications	
• AMS 5763	• AMS 5773
• AMS 5863 (Strip)	• ASTM A564 (XM-25)
ASTM A693 (Strip)	• ASTM A959
• MR0175	
Forms Manufactured	
• Bar-Flats	• Bar-Rounds
• Bar-Squares	• Billet
Plate	Sheet
Strip	Weld Wire
Wire-Shapes	
Technical Articles	
A Designer's Manual On Specialty Alloys	For Critical Automotive Components

- A Guide to Etching Specialty Alloys for Microstructural Evaluation
- Advanced Stainless Offers High Strength, Toughness and Corrosion Resistance Wherever Needed
- Advanced stamless Oners right Strength, roughness and Corros
 Allov Selection for Cold Forming (Part I)
- Allow Selection for Cold Forming (Part I)
- Alloy Selection for Cold Forming (Part II)
- How to Passivate Stainless Steel Parts
- How to Select the Right Stainless Steel or High Temperature Alloy for Heading
- Improved Stainless Steels for Medical Instrument Tubing
- New Ideas for Machining Austenitic Stainless Steels
- New Ph Stainless Combines High Strength, Fracture Toughness and Corrosion Resistance
- New Stainless Steel for Instruments Combines High Strength and Toughness
- Passivating and Electropolishing Stainless Steel Parts
- Selecting Stainless Steels for Valves
- Selection of High Strength Stainless Steels for Aerospace, Military and Other Critical Applications
- Unique Properties Required of Alloys for the Medical and Dental Products Industry

Disclaimer:

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation Copyright © 2020 CRS Holdings Inc. All rights reserved.

Visit us on the web at www.cartech.com

Edition Date: 8/1/1994