

# CarTech<sup>®</sup> ACUBE® 100 Alloy

| Type Analysis                                  |         |                     |                  |  |  |  |  |
|------------------------------------------------|---------|---------------------|------------------|--|--|--|--|
| Single figures are nominal except where noted. |         |                     |                  |  |  |  |  |
| Carbon (Maximum)                               | 0.15 %  | Manganese (Maximum) | 1.00 %           |  |  |  |  |
| Silicon (Maximum)                              | 1.00 %  | Chromium            | 26.00 to 30.00 % |  |  |  |  |
| Nickel (Maximum)                               | 1.00 %  | Molybdenum          | 5.00 to 7.00 %   |  |  |  |  |
| Cobalt                                         | Balance | Nitrogen (Maximum)  | 0.25 %           |  |  |  |  |
| Iron (Maximum)                                 | 1.00 %  |                     |                  |  |  |  |  |

# **General Information**

### Description

CarTech ACUBE 100 alloy is a non-magnetic cobalt-based alloy exhibiting high strength, excellent corrosion resistance, and outstanding wear resistance. Exposure to beryllium dust has been tied to a variety of health hazards.CarTech ACUBE 100 is beryllium free, eliminating the health and safety issues associated with beryllium-containing alloys. CarTech ACUBE 100 alloy can be considered as a replacement for copper-beryllium alloys.

CarTech ACUBE 100 alloy is a premium-melted alloy. The finished mill product can be supplied in the annealed, hot worked, or work strengthened (warm worked) condition.

### Applications

CarTech ACUBE 100 alloy can be considered for use in applications which require superior resistance to galling and wear such as bushings and bearings.

See Other Information section for wear related data.

# Corrosion Resistance

**Important Note:** The following 4-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors which affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish and dissimilar metal contact.

| Nitric Acid      | Excellent | Sulfuric Acid     | Good      |
|------------------|-----------|-------------------|-----------|
| Phosphoric Acid  | Good      | Acetic Acid       | Excellent |
| Sodium Hydroxide | Moderate  | Salt Spray (NaCl) | Excellent |
| Sea Water        | Good      | Humidity          | Excellent |

| Properties          |                           |  |  |  |  |  |  |
|---------------------|---------------------------|--|--|--|--|--|--|
| Physical Properties |                           |  |  |  |  |  |  |
| Specific Gravity    | 8.29                      |  |  |  |  |  |  |
| Density             | 0.2990 lb/in <sup>3</sup> |  |  |  |  |  |  |
| Mean Specific Heat  |                           |  |  |  |  |  |  |
| 212°F               | 0.1130 Btu/lb/°F          |  |  |  |  |  |  |
| 572°F               | 0.1260 Btu/lb/°F          |  |  |  |  |  |  |
| 1112°F              | 0.1420 Btu/lb/°F          |  |  |  |  |  |  |
| 1652°F              | 0.1580 Btu/lb/°F          |  |  |  |  |  |  |
| 1832°F              | 0.1590 Btu/lb/°F          |  |  |  |  |  |  |
| 2012°F              | 0.1600 Btu/lb/°F          |  |  |  |  |  |  |

# CarTech<sup>®</sup> ACUBE® 100 Alloy

# Specific heat

| Temperature |       | Specific Heat |              |  |
|-------------|-------|---------------|--------------|--|
| °F          | °F °C |               | (W∙S)/Kg•°K) |  |
| 212         | 100   | 0.113         | 470          |  |
| 572         | 300   | 0.126         | 524          |  |
| 1112        | 600   | 0.142         | 590          |  |
| 1652        | 900   | 0.158         | 657          |  |
| 1832        | 1000  | 0.159         | 661          |  |
| 2012        | 1100  | 0.160         | 669          |  |

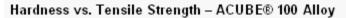
# Mean CTE

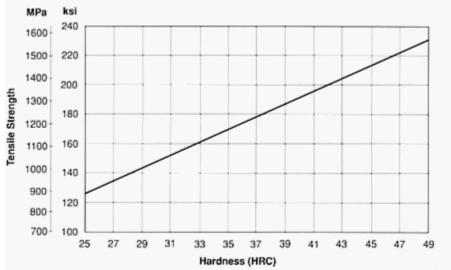
| 68 to 212°F  | 7.32 x 10 ₀ in/in/°F            |
|--------------|---------------------------------|
| 68 to 392°F  | 7.36 x 10 ₀ in/in/°F            |
| 68 to 572°F  | 7.48 x 10 ₀ in/in/°F            |
| 68 to 752°F  | 7.66 x 10 ⊸ in/in/°F            |
| 68 to 932°F  | 7.86 x 10 ⊸ in/in/°F            |
| 68 to 1112°F | 8.04 x 10 <sup>∞</sup> in/in/°F |
| 68 to 1292°F | 8.38 x 10 ⊸ in/in/°F            |
| 68 to 1472°F | 8.61 x 10 ₀ in/in/°F            |
| 68 to 1652°F | 8.86 x 10 ⊸ in/in/°F            |
| 68 to 1832°F | 9.13 x 10 ⊸ in/in/°F            |
| 68 to 2048°F | 9.19 x 10 ⊸ in/in/°F            |
| 68 to 2102°F | 9.49 x 10 ⊸ in/in/°F            |
|              |                                 |

# Mean coefficient of thermal expansion

| Tempe        | Temperature         |      | licro Inches/Inch) |  |
|--------------|---------------------|------|--------------------|--|
| 68°F to (°F) | 20°C to (°C) per °F |      | per °C             |  |
| 212          | 100                 | 7.32 | 13.18              |  |
| 392          | 200                 | 7.36 | 13.25              |  |
| 572          | 300                 | 7.48 | 13.47              |  |
| 752          | 400                 | 7.66 | 13.79              |  |
| 932          | 500                 | 7.86 | 14.15              |  |
| 1112         | 600                 | 8.04 | 14.47              |  |
| 1292         | 700                 | 8.38 | 15.09              |  |
| 1472         | 800                 | 8.61 | 15.50              |  |
| 1652         | 900                 | 8.86 | 15.95              |  |
| 1832         | 1000                | 9.13 | 16.44              |  |
| 2048         | 1120                | 9.19 | 16.54              |  |
| 2102         | 1150                | 9.49 | 17.08              |  |

| Thermal Conductivity |                        |
|----------------------|------------------------|
| 73°F                 | 87.82 BTU-in/hr/ft²/°F |
| 212°F                | 100.8 BTU-in/hr/ft²/°F |
| 572°F                | 131.4 BTU-in/hr/ft²/°F |
| 1112°F               | 178.8 BTU-in/hr/ft²/°F |
| 1652°F               | 211.5 BTU-in/hr/ft²/°F |
| 1832°F               | 221.6 BTU-in/hr/ft²/°F |
| 2012°F               | 226.9 BTU-in/hr/ft²/°F |
| 2150°F               | 246.8 BTU-in/hr/ft²/°F |


# CarTech® ACUBE® 100 Alloy


# Thermal conductivity

| Tempe | Temperature |                      | nductivity |  |
|-------|-------------|----------------------|------------|--|
| °F    | °C          | (Btu•in)/(hr•ft²•°F) | W/(m∙°K)   |  |
| 73    | 23          | 87.82                | 12.66      |  |
| 212   | 100         | 100.80               | 14.53      |  |
| 572   | 300         | 131.36               | 18.93      |  |
| 1112  | 600         | 178.77               | 25.76      |  |
| 1652  | 900         | 211.54               | 30.49      |  |
| 1832  | 1000        | 221.57               | 31.93      |  |
| 2012  | 1100        | 226.94               | 32.71      |  |
| 2150  | 1177        | 246.80               | 35.57      |  |

| Poisson's Ratio           | 0.300                      |
|---------------------------|----------------------------|
| Modulus of Elasticity (E) | 35.0 x 10 ³ ksi            |
| Modulus of Rigidity (G)   | 13.4 x 10 <sup>,</sup> ksi |

# **Typical Mechanical Properties**





# Typical Room Temperature Mechanical Properties - ACUBE® 100 Alloy

| Condition             |     |      |          | isile<br>ngth | Elongation | Reduction<br>Of Area | Hardness |
|-----------------------|-----|------|----------|---------------|------------|----------------------|----------|
|                       | Ksi | MPa  | ksi MPa  |               | %          | %                    | HRC      |
| Hot Worked            | 110 | 758  | 160 1103 |               | 25         | 23                   | 33       |
| Warm Worked           | 145 | 1000 | 200      | 1379          | 26         | 21                   | 42       |
| Warm Worked +<br>Aged | 162 | 1117 | 223      | 1538          | 12         | 10                   | 50       |

Nominal values are shown representing mid-radius locations of bar stock

ACUBE 100 is typically supplied in the warm worked (work-strengthened) condition.

# Typical Warm Worked, Room Temperature Tensile Properties of Various Bar Diameters – ACUBE® 100 Alloy

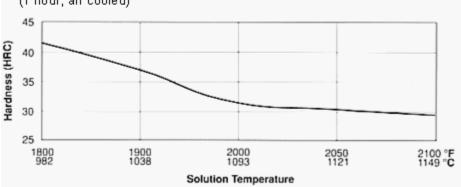
| Size             |       |     | 2%<br>strength |     |      | Elongation | Reduction<br>Of Area |  |
|------------------|-------|-----|----------------|-----|------|------------|----------------------|--|
| Inch             | mm    | Ksi | MPa            | ksi | MPa  | %          | %                    |  |
| 0.5 – 2.25 Diam. | 13-57 | 131 | 904            | 178 | 1228 | 7          | 10                   |  |
| 2.6 Diam         | 67    | 146 | 1007           | 204 | 1407 | 26         | 20                   |  |
| 3.1 Diam.        | 78    | 142 | 979            | 200 | 1379 | 27         | 22                   |  |
| 3.5 Diam.        | 89    | 146 | 1007           | 202 | 1393 | 30         | 24                   |  |
| 4.1 Diam.        | 105   | 148 | 1020           | 202 | 1393 | 24         | 20                   |  |

Condition: Warm-worked by hot rolling or forging

Test location: Center for <1.5-inch, mid-radius for >1.5-inch (longitudinal)

# **Heat Treatment**

### Annealing


ACUBE 100 alloy can be annealed at 2000 to 2050°F (1093 to 1121°C) for 1 to 2 hours followed by water quenching. Finer grain size can be maintained through the use of lower annealing temperatures with corresponding increases in annealed hardness.

## Hardening

ACUBE 100 alloy in the warm-worked condition can be further strengthened by thermal treatment in the 1325-1400°F (718-760°C) range for 2-4 hours. Yield strength increases on the order of 10-15% are possible but with larger reductions in tensile ductility.

# Effect of Solution Annealing Temperature on Hardness -

ACUBE® 100 Alloy (1 hour, air cooled)



# Workability

The alloy should be hot worked from a furnace temperature of 2100-2250°F (1149-1232°C)

Proper precautions must be taken to ensure accurate furnace temperatures at these higher temperatures to preclude hot shortness. The alloy stiffens rapidly below 2000°F (1093°C) and deformation below 1800°F (982°C) may result in surface tearing.

Thermomechanical processing techniques are normally required to obtain desired finished mechanical properties and uniformity.

### Cold Working

High strength levels can be achieved in ACUBE 100 alloy through cold working processes. It should be noted that a significant loss of ductility results from even small amounts of cold work.

# Machinability

ACUBE 100 alloy is difficult to machine in any heat treated condition due to its extremely high work hardening rate, low thermal conductivity, and the presence of hard, abrasive carbides and intermetallics in the microstructure. Tool geometry, rigidity, and adequate machine power are all extremely important considerations.

The following table shows typical feeds and speeds for ACUBE 100 alloy.

Typical Machining Speeds and Feeds – ACUBE® 100 Alloy The speeds and feeds in the following charts are conservative recommendations for initial setup. Higher speeds and feeds may be attainable depending on machining environment.

# Turning—Single-Point and Box Tools

| Condition            |                 | High Speed Tools |              |              | Carbide Tools |               |              |            |
|----------------------|-----------------|------------------|--------------|--------------|---------------|---------------|--------------|------------|
|                      | Depth<br>of Cut | Speed            | Feed         | Tool         | Speed (fpm)   |               | Feed         | Tool       |
|                      | (Inches)        | (fpm)            | (ipr)        | MtI.         | Brazed        | Throw<br>Away | (ipr)        | MtI.       |
| BHN less than 260    | .100<br>.025    | 20<br>25         | .010<br>.007 | M-42         | 70<br>90      | 80<br>100     | .010<br>.007 | C-2<br>C-3 |
| BHN 260 to 340       | .100<br>.025    | 15<br>25         | .010<br>.007 | M-47         | 65<br>80      | 75<br>95      | .010<br>.007 | C-2<br>C-3 |
| BHN greater than 340 | .100<br>.025    | 12<br>15         | .010<br>.005 | M-42<br>M-47 | 60<br>70      | 70<br>80      | .010<br>.007 | C-2<br>C-3 |

# Turning—Cutoff and Form Tools

|                       |                |                               | Feed (ipr)   |               |              |               |              |              |             |  |  |
|-----------------------|----------------|-------------------------------|--------------|---------------|--------------|---------------|--------------|--------------|-------------|--|--|
| Condition             | Speed<br>(fpm) | Cutoff Tool Width<br>(Inches) |              |               | For          | Tool<br>Mtl.  |              |              |             |  |  |
|                       |                | 1/16                          | 1/8          | 1/4           | 1/2          | 1             | 1-1/2        | 2            |             |  |  |
| BHN less than 300     | 15             | .002                          | .004         | .005          | .004         | .002          | .002         | .001         | M-42        |  |  |
| Drink less triain 500 | 45             | .003                          | .0045        | .006          | .004         | .003          | .0025        | .0015        | C-2         |  |  |
| BHN greater than 300  | 15<br>45       | .002<br>.003                  | .003<br>.003 | .004<br>.0045 | .003<br>.003 | .002<br>.0025 | .002<br>.002 | .001<br>.001 | M-42<br>C-2 |  |  |

# Reaming

| _                    |                | High Speed Tool |      |                     |      |       |              |      |       |     |
|----------------------|----------------|-----------------|------|---------------------|------|-------|--------------|------|-------|-----|
| Condition            | Speed<br>(fpm) |                 |      | eed Inch<br>eamer [ | Tool | Speed | Tool<br>Mati |      |       |     |
|                      | 8 F            | 1/8             | 1/4  | 1/2                 | 1    | 1-1/2 | 2            | MtI. | (fpm) |     |
| BHN less than 300    | 20             | .002            | .006 | .008                | .010 | .012  | .014         | M-42 | 60    | C-2 |
| BHN greater than 300 | 15             | .002            | .006 | .008                | .010 | .012  | .014         | M-42 | 50    | C-2 |

### Drilling

| _                    |                       | Feed (ipr) |           |           |      |              |       |   |        |  |
|----------------------|-----------------------|------------|-----------|-----------|------|--------------|-------|---|--------|--|
| Condition            | Condition Speed (fpm) |            | Tool Widt | h, Inches | F    | Tool<br>Mtl. |       |   |        |  |
|                      |                       | 1/16       | 1/8       | 1/4       | 1/2  | 1            | 1-1/2 | 2 |        |  |
| BHN less than 300    | 20                    |            | .002      | .003      | .003 | .004         |       |   | M-42   |  |
| BHN greater than 300 | 15                    |            | .002      | .003      | .003 | .004         |       |   | 101-42 |  |

### Threading, Die

|                      |           | Speed (fpm) |          |                     |                |  |  |  |  |
|----------------------|-----------|-------------|----------|---------------------|----------------|--|--|--|--|
| Condition            | 7 or less | 8 to 15     | 16 to 24 | 25 and up<br>T.P.I. | Tool Material  |  |  |  |  |
| BHN less than 300    | 4-6       | 5-8         | 6-10     | 8-12                | M-2, M-7, M-10 |  |  |  |  |
| BHN greater than 300 | 3-4       | 3-5         | 4-8      | 5-10                | M-42           |  |  |  |  |

# CarTech® ACUBE® 100 Alloy

### Milling, End-Peripheral

|                               | <b>↓</b>            |                | High Speed Tool |                        |      |      |       |        | Carbide Tool            |       |      |      |              |
|-------------------------------|---------------------|----------------|-----------------|------------------------|------|------|-------|--------|-------------------------|-------|------|------|--------------|
| Condition                     | Depth of<br>Cut in. | Speed<br>(fpm) | Ci              | Feed (ij<br>tter Diame |      |      | Mft . |        | E Cutter Diameter (in.) |       |      |      | Tool<br>Mtl. |
| ů                             |                     | 8£             | 1/4             | 1/2                    | 3/4  | 1-2  | F2    | ୫⊭     | 1/4                     | 1/2   | 3/4  | 1-2  | F2           |
| BHN<br>less<br>than<br>300    | .050                | 1<br>5         | .002            | .002                   | .003 | .004 | M42   | 6<br>D | .001                    | .002  | .003 | .004 | C-2          |
| BHN<br>greater<br>than<br>300 | .0.00               | 1<br>2         | .0015           | .0015                  | .002 | .003 | 10142 | 5<br>D | .0015                   | .0015 | .002 | .003 | 0-2          |

### Tapping

Broaching

| rabbing                 |                |                          | <br>Drodoning           |                |                    |                  |
|-------------------------|----------------|--------------------------|-------------------------|----------------|--------------------|------------------|
| Condition               | Speed<br>(fpm) | Tool Material            | Condition               | Speed<br>(fpm) | Chip<br>Load (ipt) | Tool<br>Material |
| BHN less than 300       | 10             | M1, M7, M10              | BHN less than 300       | 8              | .002               |                  |
| BHN greater than<br>300 | 7              | M1, M7, M10,<br>Nitrided | BHN greater than<br>300 | 6              | .002               | M-42             |

# **Other Information**

### Wear Resistance

**Bushing Wear Test Properties** 

The bushing wear test involves slow oscillation of a 0.9" OD by 0.7" ID bushing over a hardened pin. The bushing is loaded with progressively higher loads up to 10,000 pounds for a total of 1,850 cycles. Each cycle consists of a rotation from 0 to +25 degrees, to 0 degrees, then to -25 degrees and back to 0 degrees. Performance is determined by the threshold load for the onset of wear and the change in bushing dimensions after the 1,850 cycles. Refer to the table entitled Bushing Wear Test Properties.

### **Galling Test Properties**

The Button-on-Block Galling Test (ASTM G98) involves rotating a compressively loaded 1/2" (12.7 mm) diameter button against a block counterclockwise 360°, clockwise 360°, then counterclockwise 360° and determining the highest stress that can be sustained without visible galling damage. Refer to the table entitled Galling Test Properties.

|                                                     | Bushing Wear Test |        |                                       |         |  |  |  |  |  |
|-----------------------------------------------------|-------------------|--------|---------------------------------------|---------|--|--|--|--|--|
| Alloy                                               | Threshol          | d Load | Average Dimensional Change (2-3 tests |         |  |  |  |  |  |
|                                                     | lb                | kg     | Wall thickness                        | Width   |  |  |  |  |  |
| ACUBE 100<br>(warm worked condition)                | >10,000           | >4356  | -0.000"                               | +0.009" |  |  |  |  |  |
| Cu-Be Alloy (AMS 4533)                              | 10,000            | 4356   | -0.016"                               | +0.054" |  |  |  |  |  |
| Nitrogen-strengthened<br>stainless steel (AMS 5848) | <10,000           | <4356  | -0.017"                               | +0.135" |  |  |  |  |  |

# Bushing Wear Test Properties – ACUBE® 100 Alloy

# Galling Test Properties (ASTM G98) - ACUBE® 100 Alloy

|           | Galling Test             |      |  |  |  |  |  |
|-----------|--------------------------|------|--|--|--|--|--|
| Alloy     | Threshold Galling Stress |      |  |  |  |  |  |
|           | ksi                      | MPa  |  |  |  |  |  |
| ACUBE 100 | >20                      | >138 |  |  |  |  |  |
| Type 316  | <1                       | <7   |  |  |  |  |  |
| 440C      | 18                       | 124  |  |  |  |  |  |
| MP35N*    | 5                        | 35   |  |  |  |  |  |

\*MP35N is a registered trademark of SPS Technologies, Inc.

# **Applicable Specifications**

Note: While this material meets the following specifications, it may be capable of meeting or being manufactured to meet other general and customer-specific specifications.

• AMS 5918

### **Forms Manufactured**

Bar-Rounds

• Wire

 Billet • Wire-Rod

# **Technical Articles**

Beryllium-Free Alloy for High-Load Bushing and Bearing Applications

Disclaimer: The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation Copyright © 2020 CRS Holdings Inc. All rights reserved.

Visit us on the web at www.cartech.com

Edition Date: 12/19/11