

CarTech[®] 410 Stainless

Identification

UNS Number

• S41000

Type Analysis											
Single figures are nominal except where noted.											
Carbon (Maximum)	0.15 %	Manganese (Maximum)	1.00 %								
Phosphorus (Maximum)	0.040 %	Sulfur (Maximum)	0.030 %								
Silicon (Maximum)	1.00 %	Chromium	11.50 to 13.50 %								
Iron	Balance										

General Information

Description

CarTech 410 stainless, the basic hardenable martensitic stainless steel, is suitable for highly stressed parts where corrosion resistance, good strength and ductility are needed.

This alloy can be used up to 1200°F (649°C) where resistance to scaling and oxidation is required. It has been used for steam turbine buckets, blades, bucket covers, gas turbine compressor blades, nuclear reactor control rod mechanisms, valves, fasteners, shafting, pump parts, petrochemical equipment and machine parts.

Scaling

The safe scaling temperature for continuous service is 1200°F (649°C).

Corrosion Resistance

Carpenter Stainless Type 410, in both the annealed and heat-treated conditions, provides good corrosion resistance to mild atmospheres. It resists corrosion in many light industrial and domestic environments as well as potable and mine waters.

The alloy has acceptable resistance to sulfide stress cracking at Rockwell C 22 maximum hardness per NACE MR-01-75, "Sulfide-Stress-Cracking-Resistant Metallic Materials for Oil Field Equipment." Refer to the current document for details on acceptable conditions.

For optimum corrosion resistance, surfaces must be free of scale, lubricants, foreign particles, and coatings applied for drawing and heading. After fabrication of parts, cleaning and/or passivation should be considered.

Important Note: The following 4-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors which affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish and dissimilar metal contact.

Nitric Acid	Moderate	Sulfuric Acid	Restricted
Phosphoric Acid	Restricted	Acetic Acid	Restricted
Sodium Hydroxide	Moderate	Salt Spray (NaCl)	Moderate
Sour Oil/Gas	Restricted	Humidity	Moderate

Properties							
Physical Properties							
Specific Gravity	7.75						
Density	0.2800	lb/in ³					
Mean Specific Heat (32 to 212°F)	0.1100	Btu/lb/°F					

CarTech® 410 Stainless

Mean CTE (32 to 1200°F)	6.50 x 10 -₀ in/in/°F
Thermal Conductivity (212°F)	173.0 BTU-in/hr/ft²/°F
Modulus of Elasticity (E)	29.0 x 10 ³ ksi
Electrical Resistivity (70°F)	343.0 ohm-cir-mil/ft

Typical Mechanical Properties

Typical Creep and Stress Rupture Strength

Hardened 1800 °F (982 °C), oil quench, tempered 1200 °F (649 °C), one hour

Test			Stress for Rupture in								
Temp	erature	100	100 Hours		Hours	10,000 Hours		10,000 Hours			
*F *C		ksi	MPa	ksi	MPa	ksi	MPa	ksi	MPa		
800 900 1000 1100	427 482 538 593	62 46 30 16	427 317 207 110	56 38 23 13	386 262 159 90	48 32 17 10	331 221 117 69	34 18 9 5	234 124 62 34		

Typical Creep and Stress Rupture Strength Annealed condition

Test			Stress for Rupture in								
Tempe	erature	100	100 Hours		1000 Hours		10,000 Hours		10,000 Hours		
*F	°C	ksi	MPa	ksi	MPa	ksi	MPa	ksi	MPa		
800	427	60	414	55	379	52	359	_	_		
900	482	47	324	40	276	33	228	_	_		
1000	538	32	221	26	179	20	138	9	62		
1100	593	17	117	11	76	7	48	4	27		
1200	649	8	55	6	41	-	-	2	14		

Typical Elevated Temperature Mechanical Properties Hardened 1750°F (954°C), tempered one hour 50°F (28°C) above test temperature

Temp	est erature	0.1 Yi Stre	0.2% Ultimate Yield Tensile Strength Strengt		mate Isile Ingth	% Elongation in 2"	% Reduction	Room Temp. Rockwell C Hardness	Brinell Hot	
۰F	*C	ksi	MPa	ksi	MPa	(50.8 mm)	UT Area	After Test	Hardness	
Room		154	1062	212	1462	17	62	45	431	
400	204	171	1179	210	1448	14	41	431/2	401	
600	316	163	1124	208	1434	18	51	43	385	
800	427	155	1069	196	1351	17	53	43	370	
900	482	140	965	174	1200	15	53	431/2	353	
1000	538	75	517	79	545	24	79	31	191	
1100 593		46	317	50	345	30	88	24	127	
1200	649	28	193	32	221	39	92	19	81	

Typical Elevated Temperature Tensile Properties Annealed condition

Te Tempe	est erature	0.2% Yield Strength		Ultimate Tensile Strength		% Elongation in 2"	% Reduction of Area	
۰F	°C	ksi	MPa	ksi	MPa	(50.8 mm)		
70	21 40 276		75	517	35	70		
900	482	35	241	48	331	31	76	
1000	538	31	214	41	283	36	79	
1100	593	25	172	33	228	41	84	
1200	649	18	124	23	159	47	90	
1300	704	12	83	16	110	55	94	
1400	760	8	55	11	76	66	96	

Typical Elevated Temperature Tensile Properties

34" (19.05 mm) round bar, hardened 1800°F (982°C), oil quench, tempered 1125°F (607°C), one hour

Test Temperature		0.2% Yield Strength		Ultimate Tensile Strength		% Elongation in 2"	% Reduction of Area	Room Temp. Brinell Hardness	
۰F	°C	ksi	MPa	ksi	MPa	(50.8 mm)		After Test	
Room		104	717	123	848	21	69	241	
800 427		82	565	95	655	17	70	248	
900	482	77	531	85	586	19	72	248	
1000	538	65	448	71	490	22	80	248	

Typical Elevated Temperature Tensile Properties

³/₄" (19.05 mm) round bar, hardened 1800°F (982°C), oil quench, tempered 1200°F (649°C), one hour

Te Tempe	Test Temperature		Test 0.2% Yield Strength			Ultin Ter Stre	mate hsile ingth	% Elongation in 2"	% Reduction of Area	Room Temp. Brinell Hardness
۰F	°C	ksi	MPa	ksi	MPa	(50.8 mm)		After Test		
Room		90	621	109 752		22	68	217		
800	427	71	490	84	579	17	63	217		
900	482	67	462	75	517	20	71	217		
1000 538		55	379	62	427	20	79	217		
1100 593		46	317	52	359	32	86	217		

Typical Room Temperature Mechanical Properties

Bar, hardened 1850°F (1010°C) 30 minutes, oil guench, tempered 4 hours

Tempering Temperature		0.2% Yield Strength		Uitimate Tensile Strength		% Elongation in 2" (50.8 mm)	% Reduction of Area	Charpy V-Notch Impact Strength		Hardness	
°F	°C	ksi	MPa	ksi	MPa	(0010 1111)		ft-lb	J	Rockwell C	Brinell
500	260	158	1089	193	1331	17	62	56	76	43	401
700	371	155	1069	188	1296	17	60	49	66	43	401
900	482	147	1014	189	1303	18	58	28	38	42	401
1000	538	133	917	140	965	19	62	24	33	30	285
1100	593	105	724	120	827	20	63	38	52	24	248
1200	649	92	634	106	731	21	65	88	119	20	223

Heat Treatment

Annealing

Heat uniformly to 1200/1400°F (649/760°C)-remove charge from furnace and cool in air. Brinell hardness approximately 187. For cleaner cutting in broaching, threading, and other machining operations, it is sometimes desirable to lower the annealing temperature to obtain somewhat higher hardness. For maximum softness, heat to temperatures of 1500/1650°F (816/899°C) and cool slowly in the furnace. Brinell hardness approximately 155.

Hardening

Heat to 1750/1850°F (954/1010°C), soak at heat, quench in oil. The steel will also harden by cooling in air.

Tempering

Temper to secure hardness and mechanical properties desired. Soak at heat at least one hour, and longer for large pieces-cool in air.

Tempering this alloy in the range of 750/1050°F (399/566°C) results in decreased impact strength and also reduced corrosion resistance (the nature and extent of which vary with the media involved). However, tempering in this range is sometimes necessary to obtain the strength and ductility properties required. In many applications and environments, the reduced impact strength is not necessarily detrimental, and the corrosion resistance is only mildly reduced or even unaffected.

Workability

Hot Working

This steel can be readily forged, headed, riveted and upset. It is harder when hot than mild steel and consequently requires more blows or a heavier hammer. Heat uniformly to 2000/2200°F (1093/1204°C); then forge and cool in air. Cool large forgings in dry lime or furnace. Trim hot or else anneal and trim cold. Do not forge below 1650°F (899°C).

Cold Working

In the annealed condition, Carpenter Stainless Type 410 can be blanked, drawn, formed, and cold headed.

Machinability

Carpenter Stainless Type 410 in the dead soft condition is tough and draggy and the chips tend to build up on the tool. Better finishes are obtained in the cold-drawn or heat-treated condition. Where higher mechanical properties are required, it can be machined at hardnesses up to Rockwell C 35.

Following are typical feeds and speeds for Carpenter Stainless Type 410.

CarTech® 410 Stainless

Turning-Single-Point and Box Tools

Depth	ŀ	ligh Speed Tool	s	Carbide Tools (Inserts)				
of Cut	Tool			Tool	Speed	Feed		
(Inches)	Material	Speed (fpm)	Feed (ipr)	Material	Uncoated	Coated	(ipr)	
.150	M2	100	.015	C6	450	600	.015	
.025	M3	125	.007	C7	550	750	.007	

Turning—Cut-Off and Form Tools

Tool Material			Feed (ipr)							
High	Car-	Speed	Cut-C	Off Tool Wid	tth (inches)		ł	Form Too	l Width (inc	:hes)
Speed Tools	bide Tools	(fpm)	1/16	1/8	1/4	1/2		1	1½	2
M2		90	.001	.001	.002	.0018	5	.001	.001	.001
1	C6	325	.004	.0055	.007	.005	;	.004	.0035	.0035

Rough Reaming

High S	igh Speed Carbide Tools Feed (ipr) Reamer Diameter (inch					(inches)			
Tool Material	Speed (fpm)	Tool Material	Speed (fpm)	1/8	1/4	1/2	1	1½	2
M7	90	C2	110	.003	.006	.010	.014	.018	.022

Drilling

	High Speed Tools								
Tool	Speed		Feed (incl	nes per rev	volution) N	ominal Ho	le Diamete	er (inches)	
Material	(fpm)	1/16	1/8	1/4	1/2	3/4	1	1 ½	2
M7, M10	60-70	.001	.003	.006	.010	.013	.016	.021	.025

Die Threading

FPM for High Speed Tools						
Tool Material	7 or less, tpi	8 to 15, tpi	16 to 24, tpi	25 and up, tpi		
M1, M2, M7, M10	5-15	10-25	20-35	25-40		

Milling, End-Peripheral

Depth	High Speed Tools					Carbide Tools						
of Cut	Tool	Speed	Feed (ipt) Cutter Diameter (in)			Tool	Speed	Feed	(ipt) Cutte	er Diame	ter (in)	
(inches)	Material	(fpm)	1/4	1/2	3/4	1-2	Material	(Ipm)	1/4	1/2	3/4	1-2
.050	M2, M7	110	.001	.002	.003	.004	C6	345	.001	.002	.004	.006

Tapping

rapping		broadining		
High Sp	eed Tools		High Speed Tools	3
Tool Material	Speed (fpm)	Tool Material	Speed (tpm)	Chip Load (ipt)
M1, M7, M10	15-40	M2, M7	20	.004

Broaching

Additional Machinability Notes

When using carbide tools, surface speed feet/minute (sfpm) can be increased between 2 and 3 times over the high-speed suggestions. Feeds can be increased between 50 and 100%.

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

Weldability

Carpenter Stainless Type 410 can be satisfactorily welded. When a filler metal is needed, consider one with a similar composition, such as AWS E/ER 410.

Parts should be preheated to at least 350/400°F (177/204°C) before welding to prevent cracking, particularly in heavy or intricate sections. Since Carpenter Stainless Type 410 is air-hardening, it should be annealed immediately after welding to make the sections uniformly ductile.

	Other Information	
Applicable Specifications		
• AMS 5613	• ASTM A276	
• ASTM A479	• ASTM A493	
• ASTM A580	• ASTM F899	
• QQ-S-763		
Forms Manufactured		
• Bar-Flats	Bar-Rounds	
• Bar-Squares	• Billet	
• Strip	• Wire	
Wire-Rod		
Technical Articles		
A Designer's Manual On Specialty Allo	ys For Critical Automotive Components	
• Alloy Selection for Cold Forming (Part	I)	

- Alloy Selection for Cold Forming (Part II)
- Blade Alloys 101: What You Need to Know About the Alloys Used for Knife Blades
- How to Passivate Stainless Steel Parts
- · How to Select the Right Stainless Steel or High Temperature Alloy for Heading
- New Ideas for Machining Austenitic Stainless Steels
- · New Stainless for Fasteners Combines Corrosion Resistance, High Hardness and Cold Formability
- New Torrington Airframe Control Bearings Offer Improved Corrosion Resistance and Longer Dynamic Life
- One of the Word's Most Powerful Revolvers Gets Lift From Aerospace Alloys
- Passivating and Electropolishing Stainless Steel Parts
- · Selecting Stainless Steels for Valves
- · Unique Properties Required of Alloys for the Medical and Dental Products Industry

Disclaimer:

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation Copyright © 2020 CRS Holdings Inc. All rights reserved.

Visit us on the web at www.cartech.com

Edition Date: 05/01/1987