

CarTech[®] 347 Stainless

Identification

UNS Number

• S34700

Type Analysis Single figures are nominal except where noted. Carbon (Maximum) Manganese (Maximum) 0.08 % 2.00 % Phosphorus (Maximum) 0.045 % Sulfur (Maximum) 0.030 % Silicon (Maximum) Chromium 1.00 % 17.00 to 19.00 % Nickel 9.00 to 13.00 % **Columbium + Tantalum** 10 X C Minimum Iron Balance

General Information

Description

CarTech 347 stainless is a columbium/tantalum stabilized austenitic stainless steel. Like CarTech 321 stainless, it has superior intergranular-corrosion resistance compared to typical 18-8 type alloys. Since columbium and tantalum have stronger affinity for carbon than chromium, carbides of those elements tend to precipitate randomly within the grains instead of forming continuous patterns at the grain boundaries. CarTech 347 stainless should be considered for applications requiring intermittent heating between 800°F (427°C) and 1650°F (899°C).

CarTech 347 stainless should be considered for use in aircraft collector rings and exhaust manifolds, expansion joints and high temperature chemical process equipment.

Scaling

The safe scaling temperature for continuous service is 1600°F (871°C).

Corrosion Resistance

Annealed Carpenter Stainless Type 347 is resistant to atmospheric corrosion, foodstuffs, sterilizing solutions, many organic chemicals and dyestuffs, and a wide variety of inorganic chemicals. It has excellent intergranular-corrosion resistance.

For optimum corrosion resistance, surfaces must be free of scale, lubricants, foreign particles, and coatings applied for drawing and heading. After fabrication of parts, cleaning and/or passivation should be considered.

Important Note: The following 4-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors which affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish and dissimilar metal contact.

Nitric Acid	Good	Sulfuric Acid	Moderate
Phosphoric Acid	Moderate	Acetic Acid	Moderate
Sodium Hydroxide	Moderate	Salt Spray (NaCl)	Good
Sea Water	Restricted	Sour Oil/Gas	Moderate
Humidity	Excellent		

	Properties	
Physical Properties		
Specific Gravity	7.89	
Density	0.2850	lb/in ³
Mean Specific Heat (32 to 212°F)	0.1200	Btu/lb/°F

CarTech® 347 Stainless

Mean	CTE	(32 to	1200°F)
moun	012	(02 10	12001)

Modulus of Elasticity (E)

Electrical Resistivity (73°F)

28.0 x 10 ₃ ksi 433.0 ohm-cir-mil/ft

10.4 x 10 -6 in/in/°F

Typical Mechanical Properties

Typical Elevated Temperature Mechanical Properties

Annealed condition

				Shor	t-Time 1	ensile Tests		Creep	Tests
Te Tempe		0.2 Yie Stree	bld	Ten	nate sile ngth	% Elongation in	% Reduction	1% C	s for reep in Hours
°F	°C	ksi	MPa	ksi	MPa	2" (50.8 mm)	of Area	ksi	MPa
70	21	37	255	90	620	50	65	_	_
200	93	36	248	84	579	45	70	—	—
300	149	35	241	78	538	42	72	—	
400	204	30	207	76	524	38	74	—	-
500	260	28	193	74	510	36	71	—	-
600	316	25	172	72	496	35	72	_	-
700	371	23	159	68	469	35	72	_	-
800	427	22	152	66	455	35	70	-	-
900	482	21	145	63	434	34	69	-	-
1000	538	21	145	59	407	34	65	17	117
1100	593	20	138	55	379	35	67	13	90
1200	649	20	138	48	331	36	67	7	48
1300	704	20	138	40	276	36	70	5	34
1400	760	19	131	31	214	37	70	2	14
1500	816	17	117	25	172	40	70	2	14
1600	871	15	103	20	138	40	70	1	7
1700	927	12	83	15	103	45	72	-	-
1800	982	-	-	12	83	50	75	-	-
1900	1038	-	-	10	69	60	77	-	-

Typical Room Temperature Mechanical Properties

1" (25.4 mm) round bar, annealed 1900°F (1038°C)

Yi	2% eld ngth	Ter	nate Isile ngth	% Elongation in 2"	% Reduction	Brinell Hardness	Izod Impact Strength		
ksi	MPa	ksi	MPa	(50.8 mm)	of Area		ft-lb	J	
37	255	90	621	50	65	150	110	149	

Typical Stress Rupture Strength Annealed condition

			Stress for Rupture in						
Test Temp	berature	1,000	1,000 Hours 10,000 Hou						
°F	°C	ksi	MPa	ksi	MPa				
1100	593	30	207	22	152				
1200	649	18	124	11	76				
1300	704	11	76	5	34				
1400	760	7	48	_	_				
1500	816	5	34	-	_				

Heat Treatment

Annealing

Heat to 1850/2000°F (1010/1093°C) and quench in water. Brinell hardness approximately 150.

Hardening

Can only be hardened by cold working.

Stabilizing

When temperatures up to about 1600°F (871°C) are expected in service, a stabilizing treatment at 1550/1650°F (843/899°C) may be used to provide optimum intergranular corrosion resistance.

Workability

Hot Working

Carpenter Stainless Type 347 is readily forged, hot headed, riveted and upset. Because of its high red-hardness, more power for a given reduction is required than with mild steel.

Forging

Heat uniformly to 2100/2250°F (1149/1232°C). Do not forge below 1700°F (927°C). Forgings can be air-cooled. For full corrosion resistance, forgings must be water quenched or annealed.

Cold Working

Carpenter Stainless Type 347 is readily fabricated by cold working. Being extremely tough and ductile, it responds to deep drawing, bending, forming and upsetting. After cold working, it is slightly magnetic. The tensile strength and hardness of Carpenter Stainless Type 347 can be significantly increased by cold working.

Machinability

Like all austenitic steels, Carpenter Stainless Type 347 machines with tough and stringy chips. Rigidly supported tools, with as heavy a cut as possible, should be used to prevent glazing. Moderate cold working can improve machined surface finish.

Following are typical feeds and speeds for Carpenter Stainless Type 347.

Typical Machining Speeds and Feeds – Carpenter Stainless Type 347 and 348

The speeds and feeds in the following charts are conservative recommendations for initial setup. Higher speeds and feeds may be attainable depending on machining environment.

Turning—Single-Point and Box Tools

Depth	F F	ligh Speed Tool	S	Carbide Tools (Inserts)				
of Cut	Tool			Tool	Speed	Speed (fpm)		
(Inches)	Material	Speed (fpm)	Feed (ipr)	Material	Uncoated	Coated	(ipr)	
.150	T15	85	.015	C2	350	450	.015	
.025	M42	100	.007	C3	400	520	.007	

Turning—Cut-Off and Form Tools

Tool N	laterial			Feed (ipr)						
High	Car-	Speed	Cut-C	Cut-Off Tool Width (inches)			Form Tool Width (inches)			
Speed Tools	bide Tools	(fpm)	1/16 1/8 1/4		1/2	1	1 ½	2		
M2		80	.001	.0015	.002	.0015	.001	.001	.001	
	C2	300	.004	.0055	.007	.005	.004	.0035	.0035	

Rough Reaming

High S	h Speed Carbide Tools Feed (ipr) Reamer Diameter (inches)								
Tool Material	Speed (fpm)	Tool Material	Speed (fpm)	1/8	1/4	1/2	1	1½	2
M7	70	C2	90	.003	.005	.008	.012	.015	.018

Drilling

	High Speed Tools												
Tool	Speed		Feed (inches per revolution) Nominal Hole Diameter (inches)										
Material	(fpm)	1/16	1/8	1/4	1/2	3/4	1	1 ½	2				
T15, M42	50-60	.001	.002	.004	.007	.010	.012	.015	.018				

Die Threading

	FPM for High Speed Tools										
Tool Material 7 or less, tpi 8 to 15, tpi 16 to 24, tpi 25 and up, tpi											
M1, M2, M7, M10	8-15	10-20	15-25	25-30							

Milling, End-Peripheral

Depth		Н	High Speed Tools				Carbide Tools					
of Cut	Tool	Speed	Feed	Feed (ipt) Cutter Diameter (in)			Tool	Speed	Feed (ipi) Cutte	er Diarne	ter (in)
(inches)	Material	(fpm)	1/4	1/2	3/4	1-2	Material	(fpm)	1/4	1/2	3/4	1-2
.050	M2, M7	75	.001	.002	.003	.004	C2	270	.001	.002	.003	.005

Tappino

pping		Broaching		
High Speed Tools		High Speed Tools		
Tool Material	Speed (fpm)	Tool Material	Speed (fpm)	Chip Load (ipt)
M1, M7, M10	12-25	M2, M7	15	.003

When using carbide tools, surface speed feet/minute (SFPM) can be increased between 2 and 3 times over the high-speed suggestions. Feeds can be increased between 50 and 100%.

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

Additional Machinability Notes

When using carbide tools, surface speed feet/minute (sfpm) can be increased between 2 and 3 times over the high speed suggestions. Feeds can be increased between 50 and 100%.

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

CarTech® 347 Stainless

Weldability

Carpenter Stainless Type 347 can be satisfactorily welded by the shielded fusion and resistance welding processes. Oxyacetylene welding is not recommended, since carbon pickup in the weld may occur. Since austenitic welds do not harden on air cooling, the welds should have good toughness. When a filler metal is required, AWS E/ER347 welding consumables should be considered. To decrease the susceptibility to hot cracking, keep heat inputs, base metal dilution, and joint restraint to a minimum. The alloy can be used in the as-welded condition; however, for elevated temperature service, a postweld stabilizing treatment should be considered.

Other Information				
Applicable Specifications				
• ASME SA479	• ASTM A479			
• QQ-S-763				
Forms Manufactured				
• Bar-Rounds	• Billet			
• Strip	• Wire			
• Wire-Rod				
Technical Articles				
A Guide to Etching Specialty Alloys for Mi	crostructural Evaluation			
Alloy Selection for Cold Forming (Part I) Alloy Selection for Cold Forming (Part II)				
Alloy Selection for Cold Forming (Part II)				

• How to Select the Right Stainless Steel or High Temperature Alloy for Heading

Disclaimer:

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation Copyright © 2020 CRS Holdings Inc. All rights reserved.

Visit us on the web at www.cartech.com

Edition Date: 02/01/1990