

DATASHEET

22CR-13NI-5MN

Applicable specifications: AMS 5764, 5861; ASTM A240, A276, A412, A479, A580, F1314

Associated identifiers: Nitronic 50¹, UNS S20910, XM-19

Type analysis

Single figures are nominal except where noted.

Iron	Balance	Chromium	20.50-23.50 %	Nickel	11.50-13.50 %
Manganese	4.00-6.00 %	Molybdenum	1.50-3.00 %	Silicon	Max 1.00 %
Nitrogen	0.20-0.40 %	Columbium/Niobium	0.10-0.30 %	Vanadium	0.10-0.30 %
Carbon	Max 0.060 %	Phosphorus	Max 0.040 %	Sulfur	Max 0.030 %

Forms manufactured

Bar-Rounds	Billet	Strip	Wire	Wire-Rod

Description

22CR-13Ni-Mn is a nitrogen-strengthened austenitic stainless steel that provides very good corrosion resistance in combination with high strength. The alloy has better corrosion resistance than Type 316 with approximately twice the yield strength. It can be welded, machined, and cold worked using the same equipment and methods used for the conventional 300 series stainless steels. It remains nonmagnetic after severe cold work.

The alloy has an excellent combination of strength, ductility, toughness, corrosion resistance, and fabricability. Additionally, the alloy has good toughness at cryogenic temperatures and relatively high tensile and yield strengths at moderately high elevated temperatures. These properties further increase the versatility and usefulness of the alloy.

Key Properties:

- High strength and toughness
- Superior corrosion resistance
- Good ductility and fabricability

Markets:

- Automotive Industrial
- **Applications:**
- Valve shafts, taper pins
- Fasteners, cables, chains,
 Chemical equipment screens, springs

Consumer

- Marine components
- components

¹ Nitronic 50 is a trademark of Cleveland Cliffs.

Corrosion resistance

22Cr-13Ni-5Mn has very good corrosion resistance in many reducing and oxidizing acids, chlorides, and pitting environments. In particular, the alloy provides an excellent level of resistance to pitting and crevice corrosion in sea water; tests have shown it to be completely unaffected after 9 months in quiet sea water. Resistance to intergranular attack in boiling 65% nitric acid and in ferric sulfate-sulfuric acid (ASTM A262, practices B and C) is excellent for both the annealed and sensitized conditions. Like other austenitic stainless steels, 22Cr-13Ni-5Mn, under certain conditions, may stress-corrosion crack in hot chloride environments.

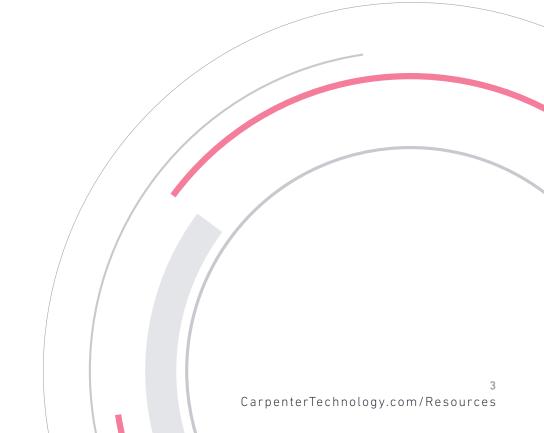
The alloy also demonstrates good resistance to sulfide stress cracking at ambient temperatures. It is included in NACE MR-01-75, "Sulfide Stress Corrosion Cracking Resistant Metallic Materials for Oil Field Equipment" at a maximum hardness of Rockwell C 35. Refer to the current document for details on acceptable conditions.

For optimum corrosion resistance, surfaces must be free of scale, lubricants, foreign particles, and coatings applied for drawing and heading. After fabrication of parts, cleaning and/or passivation should be considered.

IMPORTANT NOTE:

The following 4-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors that affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish, and dissimilar metal contact.

Nitric Acid	Excellent	Sulfuric Acid	Moderate
Phosphoric Acid	Moderate	Acetic Acid	Good
Sodium Hydroxide	Moderate	Salt Spray (NaCl)	Excellent
Sea Water	Moderate	Sour Oil/Gas	Moderate
Humidity	Excellent		



Corrosion resistance (continued)

ENVIRONMENT	TIME OF TEST	AVERAGE CORROSION RATE			
ENVIRONMENT	TIME OF TEST	22Cr-13Ni-5Mn	TYPE 316		
10 w/o formic acid boiling	3 periods, 48 hours each	2.3 mpy	19.3 mpy		
50 w/o aceticic acid boiling	3 periods, 48 hours each	0.1 mpy	0.1 mpy		
20 w/o HNO ₃ at 200°F (93°C)	3 periods, 48 hours each	0.3 mpy	0.8 mpy		
5 w/o H ₂ SO ₄ at 176°F (80°C)	3 periods , 48 hours each	0.2 mpy	33 mpy		
10 w/o H ₂ SO ₄ at 176°F (80°C)	3 periods, 48 hours each	15 mpy	112 mpy		
10 w/o FeCl ₃ at RT	10 days	0.002 g ¹	1.1 g ¹		
5w/o NaCL spray at 95°F (35°C)	200 hours	superior to Type 316 ²			

¹ Total weight lost for specimen 0.095 x 1 x 2 in. (2.41 x 25.4 x 50.8 mm).

² Based on the amount of rusting.

Physical properties

PROPERTY	At or From	English Units	Metric Units
SPECIFIC GRAVITY	_	7.88	7.88
DENSITY	_	0.2850 lb/in ³	
MEAN SPECIFIC HEAT	32 to 212°F (0 to 100°C)	0.1200 Btu/lb/°F	
	70 to 200°F (21 to 93°C)	9.0 x 10 ⁻⁶ length/length/°F	16.2 x 10 ⁻⁶ length/length/K
	70 to 400°F (21 to 204°C)	9.2 x 10 ⁻⁶ length/length/°F	16.6x10 ⁻⁶ length/length/K
	70 to 600°F (21 to 316°C)	9.6 x 10 ⁻⁶ length/length/°F	17.3 x 10 ⁻⁶ length/length/K
	70 to 800°F (21 to 427°C)	9.9 x 10 ⁻⁶ length/length/°F	17.8 x 10 ⁻⁶ length/length/K
IEAN COEFFICIENT OF THERMAL EXPANSION (CTE)	70 to 1000°F (21 to 538°C)	10.2 x 10 ⁻⁶ length/length/°F	18.4 x 10 ⁻⁶ length/length/K
	70 to 1200°F (21 to 649°C)	10.5 x 10 ⁻⁶ length/length/°F	18.9 x 10 ⁻⁶ length/length/K
	70 to 1400°F (21 to 760°C)	10.8 x 10 ⁻⁶ length/length/°F	19.4 x 10 ⁻⁶ length/length/K
	70 to 1600°F (21 to 871°C)	11.1 x 10 ⁻⁶ length/length/°F	20.0 x 10 ⁻⁶ length/length/k
	300°F (149°C)	108.0 Btu-in/hr/ft²/°F	15.6 W/m·K
THERMAL CONDUCTIVITY	900°F (482°C)	141.0 Btu-in/hr/ft²/°F	20.3 W/m·K
	1500°F (816°C)	175.0 Btu-in/hr/ft²/°F	25.2 W/m·K
ELASTIC MODULUS	-	28.0 x 10 ³ ksi	
ELECTRICAL RESISTIVITY	70°F	493.0 ohm-cir-mil/ft	

Magnetic properties

MAGNETIC PERMEABILITY	
ANNEALED, 200 OE	1.0040 Mu
COLD DRAWN 27% (WIRE), 200 Oe	1.0040 Mu
COLD DRAWN 75% (WIRE), 200 Oe	1.0040 Mu

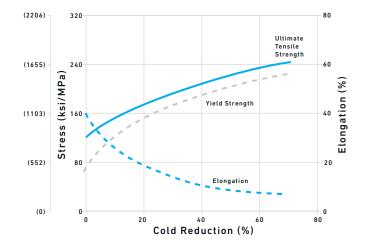
Typical mechanical properties

TYPICAL	CRYOGENIC M	ECHANICAL	PROPERTIES	5 — 1 IN (25.4	MM) ROUND BA	R, ANNEALED 2050°F	(1121°C)		
TEST TEM	IPERATURE	0.2% YIELD STRENGTH		ULTIMATE TENSILE STRENGTH		ELONGATION IN 2 IN (50.8MM)	REDUCTION OF AREA	CHARPY V IMPACT S	
°F	°C	ksi	MPa	ksi	MPa	%	%	FT-LBS	J
-100	-73	85	586	146	1007	50	65	115	156
-320	-196	128	883	226	1558	40	50	50	68

TYPICAL	ELEVATED TEM	IPERATURE TE	NSILE PROPER	TIES — 1 IN (2	5.4MM) ROUND	BAR, ANNEALED 2050°F (11	21°C)
TEST TEM	EMPERATURE				ELONGATION IN 2 IN (50.8MM)	REDUCTION OF AREA	
°F	°C	ksi	MPa	ksi	MPa	%	%
75	24	65	448	120	827	45	65
600	316	46	317	104	717	36	62
800	427	45	310	98	676	30	62
1000	538	41	283	90	621	40	62
1200	649	41	283	82	565	36	62
1350	732	39	269	68	469	38	64
1500	816	34	234	52	359	42	75

TYPIC/	L ROOM TEM	PERATURE	MECHANICA	L PROPERTIES — 1 IN (25	5.4MM) ROUND BAR, AN	NEALED 2050°F (1121°C))	
0.2% YI STRENG		0.2% TE Strend		ELONGATION IN 2 IN (50.8MM)	REDUCTION OF AREA	HARDNESS	CHARPY	/-NOTCH Trength
ksi	MPa	ksi	MPa	%	%	HRB	FT-LBS	J
65	448	120	827	45	65	96	160	217

WIRE DIA	METER	COLD WORK	0.2% YII Streng		ULTIMA	TE TENSILE GTH	ELONGATION IN 2 IN (50.8MM)	REDUCTION OF AREA
IN	мм	%	ksi	MPa	ksi	MPa	%	%
0.250	6.35	0	65	448	120	827	40	65
0.230	5.84	15	140	965	165	1138	20	55
0.208	5.28	30	170	1172	190	1310	15	48
0.185	4.70	45	190	1310	215	1482	10	45
0.158	4.01	60	215	1482	230	1586	8	40
0.136	3.45	70	230	1586	245	1689	7	38


Heat treatment

Annealing	Heat to 1950/2050°F (1066/1121°C) and cool rapidly. Thin sections are usually cooled in air and heavy sections in water.
Hardening	Cannot be hardened by heat treatment. Can be hardened only by cold work.

Workability

Hot working	22Cr-13Ni-5Mn can be forged, hot rolled, hot headed, and upset. An initial forging temperature of 2100/2200°F (1149/1204°C) is normally used. Preheating to an intermediate temperature is not required. Forgings can be rapidly cooled without danger of cracking. For best corrosion resistance, anneal after forging.
Cold working	22Cr-13Ni-5Mn can be cold formed by drawing, bending, upsetting, and stamping. Because of its higher strength and work-hardening rate, the force required is somewhat greater than for Types 302, 304, and 316. The high work- hardening rate can be advantageous when cold working to increase strength; i.e., high strengths with good ductility can be achieved with less reduction.

EFFECT OF COLD WORK ON THE TYPICAL TENSILE PROPERTIES OF WIRE

Machinability

22Cr-13Ni-5Mn has a machinability rating about 30% of AISI 1212. Slow to moderate speeds, moderate feeds, and rigid tools should be considered; tools must be kept sharp. Chips tend to be tough and stringy. Chip curlers or breakers are helpful. Use a sulfurized cutting fluid, preferably of the chlorinated type.

Typical feeds and speeds

The speeds and feeds in the following charts are conservative recommendations for initial setup. Higher speeds and feeds may be attainable depending on machining environment.

TURNING — SINGLE-POINT AND BOX TOOLS										
DEPTH OF CUT. IN	HIGH-SPEED	TOOLS		CARBIDE TOOL	CARBIDE TOOLS					
	SPEED,	SPEED, FEED, TOOL		SPEED, FPM		FEED,	TOOL			
	FPM	IPR	MATERIAL	UNCOATED	COATED	IPR	MATERIAL			
.150	55	.015	M-2	250	300	.015	C-6			
.025	70	.007	T-15	300	350	.007	C-7			

TURNING — CUT-OFF AND FORM TOOLS												
SPEED, FPM	FEED, IPR	FEED, IPR										
	CUT-OFF	CUT-OFF TOOL WIDTH, IN			OL WIDTH, IN	HIGH-SPEED	CARBIDE					
	1/16	1/8	1/4	1/2	1	1-1/2	2	TOOLS	TOOLS			
40	.001	.001	.0015	.0015	.001	.0007	.0007	T-15	_			
400	.004	.0055	.0045	.004	.003	.002	.002	_	C-6			

ROUGH REAMING											
HIGH-SPEED TOOLS CARBIDE TOOLS					FEED, IPR, REAMER DIAMETER, IN						
SPEED, FPM	TOOL MATERIAL	SPEED, FPM	TOOL MATERIAL	1/8	1/4	1/2	1	1-1/2	2		
60	M-7	80	C-2	.003	.005	.008	.012	.015	.018		

DRILLING — HIGH-SPEED TOOLS										
SPEED, FPM	FEED, IPR									
	NOMINAL	TOOL MATERIAL								
	1/16	1/8	1/4	1/2	3/4	1	1-1/2	2		
45-50	.001	.002	.004	.007	.010	.012	.0`5	.018	M-42, T-15	

DIE THREADING										
SPEED, FPM										
7 OR LESS	8 TO 15	16 TO 24	25 AND UP, TPI	TOOL MATERIAL						
4-8	6–10	8–12	10–15	M-42, T-15						

MILLING — END PERIPHERAL												
	HIGH-SPE	ED TOOLS				CARBIDE TOOLS						
DEPTH OF CUT, IN		FEED, IN PER TOOTH						FEED, IN PER TOOTH CUTTER DIAMETER, IN				
	SPEED, FPM	CUTTER DIAMETER, IN			TOOL	SPEED, FPM	TOOL MATERIAL					
	I F M	1/4	1/2	3/4	1-2	MATERIAL	TEM	1/4	1/2	3/4	1-2	MATERIAL
.050	65	.001	.002	.003	.004	M-2, M-7	245	.001	.002	.003	.005	C-2

TAPPING — HIGH-SPEED TOOLS		BROACHING — HIGH-SPEED TOOLS					
SPEED, FPM	TOOL MATERIAL	SPEED, FPM	CHIP LOAD, IPT	TOOL MATERIAL			
12–25	M-1, M-7, M-10	10	.003	M-2, M-7			

Additional machinability notes

When using carbide tools, surface speed feet/minute (sfpm) can be increased between 2 and 3 times over the high-speed suggestions. Feeds can be increased between 50 and 100%.

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

Weldability

22Cr-13Ni-5Mn can be satisfactorily welded by the shielded fusion and resistance welding processes. Oxyacetylene welding is not recommended, since carbon pickup in the weld may occur. When a filler metal is required, AWS E/ER209 welding consumables should be considered for welds with strength approaching that of the base metal. If high weld strength is not necessary, then E/ER309 should be considered. Resistance to intergranular corrosion can be restored by a postweld annealing treatment.

For additional information, please contact your nearest sales office: info@cartech.com | 610 208 2000

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make their own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings LLC, a subsidiary of Carpenter Technology Corporation.