

# CarTech® 21Cr-6Ni-9Mn Stainless

### Identification

**UNS Number** 

• S21904

#### **Type Analysis** Single figures are nominal except where noted. Manganese Carbon (Maximum) 8.00 to 10.00 % 0.03 % Phosphorus (Maximum) 0.040 % Sulfur (Maximum) 0.030 % Silicon (Maximum) Chromium 1.00 % 19.00 to 21.50 % Nickel 5.50 to 7.50 % Nitrogen 0.15 to 0.40 % Iron Balance

### **General Information**

#### Description

CarTech 21Cr-6Ni-9Mn is a high-manganese nitrogen strengthened, austenitic stainless steel that combines high strength in the annealed condition, excellent resistance to oxidation at high temperatures, good resistance to lead oxide and a high level of corrosion resistance at ambient temperatures. The alloy can be fabricated and formed much the same as CarTech 304 and CarTech 316, and is readily weldable. It remains nonmagnetic after severe cold work.

CarTech 21Cr-6Ni-9Mn has been used for chemical process and pollution-control equipment, steam and autoclave applications, and various aircraft engine components, as well as numerous other applications.

#### Scaling

Carpenter 21Cr-6Ni-9Mn has good resistance to high temperature oxidation in air and to corrosion by molten lead oxide.

### **Corrosion Resistance**

Carpenter 21Cr-6Ni-9Mn has corrosion resistance approaching that of Type 304L. Its low carbon content provides resistance to intergranular corrosion even in the welded condition.

For optimum corrosion resistance, surfaces must be free of scale, lubricants, foreign particles, and coatings applied for drawing and heading. After fabrication of parts, cleaning and/or passivation should be considered.

### CarTech® 21Cr-6Ni-9Mn Stainless

**Important Note:** The following 4-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors which affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish and dissimilar metal contact.

| Nitric Acid      | Good       | Sulfuric Acid     | Moderate  |
|------------------|------------|-------------------|-----------|
| Phosphoric Acid  | Moderate   | Acetic Acid       | Moderate  |
| Sodium Hydroxide | Moderate   | Salt Spray (NaCl) | Good      |
| Sea Water        | Restricted | Humidity          | Excellent |

#### Typical Corrosion Properties Annealed condition

| Environment*                               | Material Condition                      | Average<br>Corrosion Rate |  |  |
|--------------------------------------------|-----------------------------------------|---------------------------|--|--|
| 65 w/o HNO <sub>3</sub> -boiling           | Annealed                                | 7 mpy                     |  |  |
| 65 w/o HNO <sub>3</sub> —boiling           | Annealed + Sensitized<br>1250°F (677°C) | 9 mpy                     |  |  |
| 5 w/o H <sub>3</sub> SO <sub>4</sub> —R.T. | Annealed                                | nil                       |  |  |
| 10 w/o acetic acid-boiling                 | Annealed                                | nîl                       |  |  |
| 10 w/o acetic acid-boiling                 | Annealed + Welded                       | nil                       |  |  |
| Oxalic acid etch test**                    | Annealed                                | pass                      |  |  |

\*5 periods—48 hrs. each

\*\*ASTM A262 Practice A

### **Properties**

### **Physical Properties**

| i nysical i roperties            |                           |
|----------------------------------|---------------------------|
| Specific Gravity                 | 7.83                      |
| Density                          | 0.2830 lb/in <sup>3</sup> |
| Mean Specific Heat (32 to 212°F) | 0.1200 Btu/lb/°F          |
| Mean CTE                         |                           |
| 80 to 200°F                      | 9.30 x 10 ⊸ in/in/°F      |
| 80 to 400°F                      | 9.60 x 10 ⊸ in/in/°F      |
| 80 to 600°F                      | 10.1 x 10 ⊸ in/in/°F      |
| 80 to 1000°F                     | 10.6 x 10 ₅ in/in/°F      |
| 80 to 1400°F                     | 11.1 x 10 ⊸ in/in/°F      |
| 80 to 1600°F                     | 11.2 x 10 ⊸ in/in/°F      |
| 80 to 1800°F                     | 11.4 x 10 ⊸ in/in/°F      |

#### Mean Coefficient of Thermal Expansion

| Tempe   | erature | 104/°F | 10-%/K |
|---------|---------|--------|--------|
| 80°F to | 27°C to |        |        |
| 200     | 93      | 9.3    | 16.7   |
| 400     | 204     | 9.6    | 17.3   |
| 600     | 316     | 10.1   | 18.2   |
| 1000    | 538     | 10.6   | 19.1   |
| 1400    | 760     | 11.1   | 20.0   |
| 1600    | 871     | 11.2   | 20.2   |
| 1800    | 982     | 11.4   | 20.5   |

## CarTech® 21Cr-6Ni-9Mn Stainless

| Thermal Conductivity |                        |
|----------------------|------------------------|
| 200°F                | 96.00 BTU-in/hr/ft²/°F |
| 400°F                | 112.0 BTU-in/hr/ft²/°F |
| 600°F                | 126.0 BTU-in/hr/ft²/°F |
| 800°F                | 140.0 BTU-in/hr/ft²/°F |
| 1000°F               | 156.0 BTU-in/hr/ft²/°F |
| 1200°F               | 172.0 BTU-in/hr/ft²/°F |
| 1400°F               | 186.0 BTU-in/hr/ft²/°F |
| 1600°F               | 200.0 BTU-in/hr/ft²/°F |

### Thermal Conductivity

|                           | Test<br>Temperature |     | W/m • K         |  |
|---------------------------|---------------------|-----|-----------------|--|
| ۰F                        | °C                  |     |                 |  |
| 200                       | 93                  | 96  | 14              |  |
| 400                       | 204                 | 112 | 16              |  |
| 600                       | 316                 | 126 | 18              |  |
| 800                       | 427                 | 140 | 20              |  |
| 1000                      | 538                 | 156 | 23              |  |
| 1200                      | 649                 | 172 | 25              |  |
| 1400                      | 760                 | 186 | 27              |  |
| 1600                      | 1600 871            |     | 29              |  |
| Modulus of Elasticity (E) |                     |     | 28.5 x 10 ₃ ksi |  |

 Electrical Resistivity (70°F)
 439.0
 ohm-cir-mil/ft

### **Magnetic Properties**

| Magnetic Permeability |             |
|-----------------------|-------------|
| 50.0 Oe, 15.000%      | 1.0040 Mu   |
| 50.0 Oe, 35.000%      | 1.0050 Mu   |
| 50.0 Oe, 60.000%      | 1.0100 Mu   |
| Annealed, 50.0 Oe     | 1.0050 Mu   |
| 100 Oe, 15.000%       | 1.0040 Mu   |
| 100 Oe, 35.000%       | 1.0050 Mu   |
| 100 Oe, 60.000%       | 1.0100 Mu   |
| Annealed, 100 Oe      | 1.0040 Mu   |
| 200 Oe, 15.000%       | 1.0030 Mu   |
| 200 Oe, 35.000%       | 1.0050 Mu   |
| 200 Oe, 60.000%       | 1.0120 Mu   |
| Annealed, 200 Oe      | 1.0040 Mu   |
| 500 Oe, 60.000%       | < 1.0200 Mu |
| Annealed, 500 Oe      | 1.0020 Mu   |
|                       | 1.0050 Mu   |
|                       |             |

### Magnetic Permeability

| Condition        | Test<br>Temperature |      | Field Strength<br>(Oersteds) of |       |       |        |
|------------------|---------------------|------|---------------------------------|-------|-------|--------|
|                  | ٩F                  | °C   | 50                              | 100   | 200   | 500    |
| Annealed         | 75                  | 24   | 1.005                           | 1.004 | 1.004 | 1.002  |
| Annealed         | -350                | -212 | -                               | -     | -     | 1.005  |
| 15% cold reduced | 75                  | 24   | 1.004                           | 1.004 | 1.003 | -      |
| 35% cold reduced | 75                  | 24   | 1.005                           | 1.005 | 1.005 | -      |
| 60% cold reduced | 75                  | 24   | 1.010                           | 1.010 | 1.012 | <1.020 |

#### Typical Mechanical Properties

#### Effect of Annealing Temperature on Typical Room Temperature Mechanical Properties of Strip

| Annealing*<br>Temperature |      |     | 0.2%<br>Yield Strength |     | nate<br>Strength | % Elongation<br>in 2" (50.8 mm) | Rockwell B<br>Hardness |
|---------------------------|------|-----|------------------------|-----|------------------|---------------------------------|------------------------|
| ٩F                        | °C   | ksi | MPa                    | ksi | MPa              |                                 |                        |
| 1800                      | 982  | 70  | 483                    | 115 | 793              | 44                              | 95                     |
| 1850                      | 1010 | 65  | 448                    | 112 | 772              | 46                              | 93                     |
| 1900                      | 1038 | 62  | 428                    | 110 | 758              | 47                              | 92                     |
| 1950                      | 1066 | 61  | 421                    | 107 | 738              | 48                              | 90                     |

\*Annealing time was approximately 6 minutes.

#### Effect of Cold Reduction and Stress Relief Temperature on Typical Mechanical Properties of Strip\*

|     | est<br>erature | %<br>Cold<br>Reduction | Treat | Relief<br>ment<br>our) | Yie | 0.2% Ultimate<br>Yield Tensile<br>Strength Strength |     | Yield |    | %<br>Elongation<br>in 2"(50.8mm) | Rockwell<br>Hardness |
|-----|----------------|------------------------|-------|------------------------|-----|-----------------------------------------------------|-----|-------|----|----------------------------------|----------------------|
| ٩F  | °C             |                        | ۴F    | °C                     | ksi | MPa                                                 | ksi | MPa   |    |                                  |                      |
| 75  | 24             | 0                      | 1     | _                      | 65  | 448                                                 | 113 | 779   | 43 | B 95                             |                      |
| 75  | 24             | 15                     | _     | —                      | 116 | 800                                                 | 137 | 944   | 22 | C 31                             |                      |
| 75  | 24             | 30                     | _     | _                      | 159 | 1096                                                | 177 | 1220  | 12 | C 37                             |                      |
| 75  | 24             | 0                      | 900   | 482                    | 70  | 483                                                 | 114 | 786   | 43 | B 95                             |                      |
| 75  | 24             | 15                     | 900   | 482                    | 117 | 806                                                 | 138 | 952   | 22 | C 32                             |                      |
| 75  | 24             | 30                     | 900   | 482                    | 175 | 1207                                                | 180 | 1241  | 11 | C 40                             |                      |
| 75  | 24             | 0                      | 1250  | 677                    | 70  | 483                                                 | 114 | 786   | 43 | B 94                             |                      |
| 75  | 24             | 15                     | 1250  | 677                    | 105 | 724                                                 | 137 | 944   | 26 | C 30                             |                      |
| 75  | 24             | 30                     | 1250  | 677                    | 149 | 1027                                                | 165 | 1138  | 19 | C 37                             |                      |
| 900 | 482            | 0                      | —     | —                      | 33  | 228                                                 | 77  | 531   | 41 | —                                |                      |
| 900 | 482            | 15                     |       | —                      | 76  | 524                                                 | 94  | 648   | 18 | -                                |                      |
| 900 | 482            | 30                     | _     | -                      | 104 | 717                                                 | 121 | 834   | 7  | -                                |                      |
| 900 | 482            | 0                      | 1250  | 677                    | 34  | 234                                                 | 77  | 531   | 42 | —                                |                      |
| 900 | 482            | 15                     | 1250  | 677                    | 71  | 490                                                 | 91  | 627   | 21 | -                                |                      |
| 900 | 482            | 30                     | 1250  | 677                    | 97  | 668                                                 | 112 | 772   | 13 | -                                |                      |

\*Bar properties are similar to strip properties for sizes up to approximately 2" (50.8 mm) rd. Larger bar sizes will have slightly lower strengths because hot/cold working becomes less effective in strengthening as the bar diameter increases.

#### Typical Creep Strength of Annealed Bar

| Test Temperature |                      |     | Stress for Creep of |                   |    |  |  |
|------------------|----------------------|-----|---------------------|-------------------|----|--|--|
| °F               | °C 0.1% in 1000 Hrs. |     |                     | 0.01% in 1000 Hrs |    |  |  |
|                  | ksi                  | MPa | ksi                 | MPa               |    |  |  |
| 1200             | 649                  | 14  | 47                  | 10                | 64 |  |  |
| 1350             | 732                  | 6   | 91                  | 4                 | 28 |  |  |

### Typical Cryogenic Mechanical Properties of Annealed Bar

| Test<br>Temperature |      | 0.2%<br>Yield<br>Strength |     | Ultimate<br>Tensile<br>Strength |      | Tensile Flongation Reducti |    | V-Notch | arpy<br>Impact<br>ngth |
|---------------------|------|---------------------------|-----|---------------------------------|------|----------------------------|----|---------|------------------------|
| ۴F                  | °C   | ksi                       | MPa | ksi                             | MPa  |                            |    | ft-lb   | J                      |
| 75                  | 24   | 52                        | 359 | 101                             | 696  | 53                         | 73 | 240     | 325                    |
| -110                | -79  | 88                        | 607 | 146                             | 1007 | 52                         | 72 | 213     | 289                    |
| -321                | -196 | 141                       | 972 | 219                             | 1510 | 35                         | 34 | 95      | 129                    |

|      | Test 0.2%<br>Temperature Yield Stren |     | trength | Ultim<br>Tens<br>Strer | sile<br>Igth | %<br>Elongation<br>In 2" (50.8 mm) | Rockwell<br>B<br>Hardness |
|------|--------------------------------------|-----|---------|------------------------|--------------|------------------------------------|---------------------------|
| °F   | °C                                   | ksi | MPa     | ksi MPa                |              |                                    |                           |
| 75   | 24                                   | 65  | 448     | 112                    | 772          | 42                                 | 95                        |
| 200  | 93                                   | 52  | 359     | 100                    | 690          | 41                                 | -                         |
| 400  | 204                                  | 41  | 283     | 89                     | 614          | 40                                 | -                         |
| 600  | 316                                  | 38  | 262     | 86                     | 593          | 33                                 | -                         |
| 800  | 427                                  | 32  | 221     | 79                     | 545          | 33                                 | -                         |
| 900  | 482                                  | 29  | 200     | 75                     | 517          | 41                                 | -                         |
| 1000 | 538                                  | 29  | 200     | 71                     | 490          | 35                                 | -                         |
| 1100 | 593                                  | 28  | 193     | 68                     | 469          | 35                                 | -                         |
| 1200 | 649                                  | 26  | 179     | 60                     | 414          | 26                                 | -                         |
| 1300 | 704                                  | 26  | 179     | 51                     | 352          | 24                                 | -                         |

### Typical Elevated Temperature Tensile Properties of Annealed Strip

### Typical Room Temperature Mechanical Properties of Annealed Bar

| Cross<br>Section<br>Size | Test<br>Direction | Yi  | :%<br>eid<br>ngth | Ultin<br>Ten<br>Strei | sile | %<br>Elongation<br>in 4D | %<br>Reduction<br>of Area | Rockwell<br>B<br>Hardness |
|--------------------------|-------------------|-----|-------------------|-----------------------|------|--------------------------|---------------------------|---------------------------|
|                          |                   | ksi | MPa               | ksi                   | MPa  |                          |                           |                           |
| 6''(152mm) sq.           | Longitudinal      | 62  | 428               | 95                    | 655  | 46                       | 69                        | _                         |
| 6"(152mm) sq.            | Transverse        | 52  | 358               | 93                    | 641  | 30                       | 45                        | _                         |
| 4"(102mm) sq.            | Longitudinal      | 56  | 386               | 97                    | 668  | 53                       | 73                        | -                         |
| 1"(25.4mm) rd.           | Longitudinal      | 52  | 358               | 101                   | 696  | 53                       | 73                        | 90                        |

### Typical Room Temperature Mechanical Properties of Cold-Drawn Wire

| %<br>Cold<br>Reduction | Treat | Relief<br>tment<br>ours) | Yi  | 0.2% Ultimate<br>Yield Tensile<br>Strength Strength |     | %<br>Elongation<br>in 4D | %<br>Reduction<br>of Area | Rockwell<br>C<br>Hardness |    |
|------------------------|-------|--------------------------|-----|-----------------------------------------------------|-----|--------------------------|---------------------------|---------------------------|----|
|                        | ۰F    | °C                       | ksi | MPa                                                 | ksi | MPa                      |                           |                           |    |
| 15                     | none  | none                     | 106 | 731                                                 | 127 | 876                      | 55                        | 70                        | _  |
| 15                     | 1000  | 538                      | 101 | 696                                                 | 127 | 876                      | 55                        | 65                        | 20 |
| 15                     | 1150  | 621                      | 91  | 627                                                 | 124 | 855                      | 44                        | 65                        | 20 |
| 15                     | 1300  | 704                      | 90  | 620                                                 | 121 | 834                      | 59                        | 63                        | 20 |
| 30                     | none  | none                     | 152 | 1048                                                | 172 | 1186                     | 24                        | 54                        | 37 |
| 30                     | 1000  | 538                      | 154 | 1062                                                | 172 | 1186                     | 24                        | 53                        | 37 |
| 30                     | 1150  | 621                      | 140 | 965                                                 | 153 | 1054                     | 26                        | 53                        | 31 |
| 30                     | 1300  | 704                      | 127 | 876                                                 | 147 | 1014                     | 39                        | 53                        | 28 |

### Typical Stress Rupture Strength of Annealed Bar

| Test Tem | perature |     | Stress for | Rupture in |       |  |
|----------|----------|-----|------------|------------|-------|--|
| ۴F       | °C       | 100 | Hours      | 1000 H     | lours |  |
|          |          | ksi | MPa        | ksi        | MPa   |  |
| 1200     | 649      | 34  | 234        | 28         | 193   |  |
| 1350     | 732      | 21  | 145        | 14         | 97    |  |
| 1500     | 816      | 10  | 69         | 6          | 41    |  |

### Typical Stress Rupture Strength of Annealed Strip

| Test Tem | perature |     | Stress for | Rupture in |       |
|----------|----------|-----|------------|------------|-------|
| ۴F       | °C       | 100 | Hours      | 1000       | Hours |
|          |          | ksi | MPa        | ksi        | MPa   |
| 1200     | 649      | 32  | 221        | 32         | 152   |
| 1500     | 816      | 6   | 40         | 3          | 21    |

### Heat Treatment

#### Annealing

Annealing is used for best stress rupture life and for operating temperatures between 1300 and 1600°F (704 and 871°C). The alloy is not recommended for service above 1600°F (871°C). Also, annealing softens the alloy for maximum formability. After annealing the strength of the material can be increased only by hot/cold working or cold working.

Annealing is generally done in the temperature range of 1800/2150°F (982/1177°C). Grain coarsening will occur at the higher temperatures. Lower temperatures such as 1650°F (899°C) can be used; the temperature must be selected according to the degree of softening required and grain size restrictions.

#### Stress Relieving

Stress relieving is used to achieve best all-around properties and for operating temperatures below 1300°F (704°C). The temperature range for stress relieving is 900/1400°F (482/760°C). Temperatures between 900 and 1250°F (482 and 677°C) will have little effect on the mechanical properties of cold reduced material unless the percent cold reduction is high; then slight increases or decreases in strength will occur. Above 1250°F (677°C), the change in mechanical properties will occur more rapidly; a temperature of 1500°F (816°C) begins to cause rapid softening. The proper stress relief treatment should be selected carefully in order to produce the desired strength levels.

### Workability

Carpenter 21Cr-6Ni-9Mn is a solution-strengthened alloy and cannot be strengthened by heat treatment. Hot/cold working or cold working can be employed to strengthen this alloy. Hot/cold working is normally done in the temperature range of 1200/1500°F (649/816°C); reductions in the order of 10 to 40% are used and the percent used is dependent on the strength level required. A stress relief of 900/1400°F (482/760°C) is normally applied after hot/cold working operations. Heat treatment of hot/cold worked material, as discussed in the preceding section, will aid in adjusting mechanical properties to the desired levels.

#### Hot Working

Carpenter 21Cr-6Ni-9Mn can be forged, hot rolled, hot headed and upset. An initial forging temperature of 2100/2200°F (1149/1204°C) is normally used. Preheating to an intermediate temperature is not required. Forgings can be rapidly cooled without danger of cracking. This alloy can be hot worked as low as 1200°F (649°C), and is not susceptible to hot shortness in the entire working range. For best corrosion resistance, anneal after forging.

#### Cold Working

Carpenter 21Cr-6Ni-9Mn is readily cold worked by conventional methods. The alloy's high work-hardening rate and higher initial yield strength dictate greater force than when forming the same part from Types 301, 302, 304, 316, etc.

#### Machinability

Carpenter 21Cr-6Ni-9Mn is readily machined using the techniques applied to the austenitic stainless steels. A rigid setup and ample coolant flow should be considered.

Following are typical feeds and speeds for Carpenter 21Cr-6Ni-9Mn.

### Typical Machining Speeds and Feeds – Carpenter 21Cr-6Ni-9Mn Stainless

The speeds and feeds in the following charts are conservative recommendations for initial setup. Higher speeds and feeds may be attainable depending on machining environment.

#### Turning-Single-Point and Box Tools

| Depth    | ŀ        | ligh Speed Tool | S          | Carbide Tools (Inserts) |          |        |       |  |
|----------|----------|-----------------|------------|-------------------------|----------|--------|-------|--|
| of Cut   | Tool     |                 |            | Tool                    | Speed    | Feed   |       |  |
| (Inches) | Material | Speed (fpm)     | Feed (ipr) | Material                | Uncoated | Coated | (ipr) |  |
| .150     | M2       | 55              | .015       | C6                      | 250      | 300    | .015  |  |
| .025     | T15      | 70              | .007       | C7                      | 300      | 350    | .007  |  |

#### Turning-Cut-Off and Form Tools

| [ | Tool M         | laterial      |       |       |              |              | Feed (ipr | )        |            |       |
|---|----------------|---------------|-------|-------|--------------|--------------|-----------|----------|------------|-------|
| ſ | High           | Car-          | Speed | Cut-C | off Tool Wid | ith (inches) |           | Form Too | Width (inc | :hes) |
|   | Speed<br>Tools | bide<br>Tools | (fpm) | 1/16  | 1/8          | 1/4          | 1/2       | 1        | 1 ½        | 2     |
| ĺ | T15            |               | 40    | .001  | .001         | .0015        | .0015     | .001     | .0007      | .0007 |
| l |                | C6            | 140   | .004  | .0055        | .0045        | .004      | .003     | .002       | .002  |

#### Rough Reaming

| High S           | High Speed Carbide Tools |                  | e Tools        | Feed (ipr) Reamer Diameter (inches) |      |      |      |      |      |
|------------------|--------------------------|------------------|----------------|-------------------------------------|------|------|------|------|------|
| Tool<br>Material | Speed<br>(fpm)           | Tool<br>Material | Speed<br>(fpm) | 1/8                                 | 1/4  | 1/2  | 1    | 1 ½  | 2    |
| M7               | 60                       | C2               | 80             | .003                                | .005 | .008 | .012 | .015 | .018 |

#### Drilling

|          | High Speed Tools |      |            |             |            |           |            |             |      |  |  |  |
|----------|------------------|------|------------|-------------|------------|-----------|------------|-------------|------|--|--|--|
| Tool     | Speed            |      | Feed (inch | nes per rev | olution) N | ominal Ho | le Diamete | er (inches) |      |  |  |  |
| Material | (fpm)            | 1/16 | 1/8        | 1/4         | 1/2        | 3/4       | 1          | 1 ½         | 2    |  |  |  |
| T15, M42 | 50-60            | .001 | .002       | .004        | .007       | .010      | .012       | .015        | .018 |  |  |  |

### Die Threading

| FPM for High Speed Tools                                               |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Tool Material 7 or less, tpi 8 to 15, tpi 16 to 24, tpi 25 and up, tpi |  |  |  |  |  |  |  |  |
| T15, M42 4-8 6-10 8-12 10-15                                           |  |  |  |  |  |  |  |  |

#### Milling, End-Peripheral

| Depth    |          | H     | Carbide Tools |                                 |     |     |          |       |        |            |          |          |
|----------|----------|-------|---------------|---------------------------------|-----|-----|----------|-------|--------|------------|----------|----------|
| of Cut   | Tool     | Speed | Feed          | Feed (ipt) Cutter Diameter (in) |     |     |          | Speed | Feed ( | ipt) Cutte | er Diame | ter (in) |
| (inches) | Material | (fpm) | 1/4           | 1/2                             | 3/4 | 1-2 | Material | (tpm) | 1/4    | 1/2        | 3/4      | 1-2      |
| .050     | M2, M7   | 65    | .001          |                                 |     |     |          | 245   | .001   | .002       | .003     | .005     |

#### Tapping

### Broaching

| Tupping.          |             | <br>Di o ci o i i i i i |                  |                 |
|-------------------|-------------|-------------------------|------------------|-----------------|
| High Sp           | eed Tools   |                         | High Speed Tools | 5               |
| Tool Material     | Speed (fpm) | Tool Material           | Speed (fpm)      | Chip Load (ipt) |
| M1, M7, M10 12-25 |             | M2, M7                  | 10               | .003            |

When using carbide tools, surface speed feet/minute (SFPM) can be increased between 2 and 3 times over the high-speed suggestions. Feeds can be increased between 50 and 100%.

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

Additional Machinability Notes

When using carbide tools, surface speed feet/minute (SFPM) can be increased between 2 and 3 times over the high speed suggestions. Feeds can be increased between 50 and 100%.

### CarTech<sup>®</sup> 21Cr-6Ni-9Mn Stainless

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

#### Weldability

Carpenter 21Cr-6Ni-9Mn can be satisfactorily welded by the shielded fusion and resistance welding processes. Oxyacetylene welding is not recommended, since carbon pickup in the weld may occur. When a filler metal is required, consider AWS E/ER219 welding consumables which should provide welds with strength approaching that of the base metal. If high weld strength is not necessary, then E/ER309 should be considered. Resistance to intergranular corrosion can be restored by a postweld annealing treatment.

### **Other Information**

| eamless or Welded Tubing                                   |                                                                                                                                                                                                                   |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • AMS 5562 (Seamless Tubing)                               |                                                                                                                                                                                                                   |
| • AMS 5656 (Bar, Forging, Rings)                           |                                                                                                                                                                                                                   |
| ASTM A412 (Plate, Sheet, Strip)                            |                                                                                                                                                                                                                   |
| • MIL-T-9821 (Sheet, Plate, Strip, Bars, Shapes, Forgings) |                                                                                                                                                                                                                   |
|                                                            |                                                                                                                                                                                                                   |
| • Billet                                                   |                                                                                                                                                                                                                   |
| • Wire                                                     |                                                                                                                                                                                                                   |
|                                                            | <ul> <li>AMS 5562 (Seamless Tubing)</li> <li>AMS 5656 (Bar, Forging, Rings)</li> <li>ASTM A412 (Plate, Sheet, Strip)</li> <li>MIL-T-9821 (Sheet, Plate, Strip, Bars, Shapes, Forgings)</li> <li>Billet</li> </ul> |

#### Technical Articles

- A Guide to Etching Specialty Alloys for Microstructural Evaluation
- · Selecting Stainless Steels for Valves

#### Disclaimer:

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation Copyright © 2020 CRS Holdings Inc. All rights reserved.

Visit us on the web at www.cartech.com

Edition Date: 08/01/1986