

Applicable specifications: DIN X4CrNiMo 16-5-1

Associated specifications: EN 1.4418

Type analysis

Single figures are nominal except where noted.

Iron	Balance	Chromium	16.00 %	Nickel	5.00 %
Manganese	Max 1.50 %	Molybdenum	1.00 %	Silicon	Max 0.70 %
Carbon	0.060 %	Phosphorus	Max 0.010 %	Sulfur	Max 0.010 %

Forms manufactured

Bar

Description

VACUMET 1.4418 Stainless is a double vacuum melted variant of 1.4418 Martensitic Stainless steel. 1.4418 is specially formulated for those applications requiring high mechanical strength combined with improved corrosion resistance relative to traditional martensitic stainless steels such as AISI 410. 1.4418 Stainless steel is weldable and cold formable. The low inclusion content of VACUMET 1.4418 Stainless and its controlled microstructure significantly improves the alloy's toughness, weldability, and formability and makes VACUMET 1.4418 Stainless an ideal choice for high pressure thin-walled applications. VACUMET 1.4418 Stainless is commonly supplied in the full hard condition designated as QT900.

Key Properties:

- · High strength
- · High toughness
- Corrosion resistance
- Magnetic

Markets:

- Aerospace
- Nuclear
- Consumer
- Transportation
- Industrial

Applications:

• Bolts

· Fuel injector bodies

Fittings

- Valves
- High pressure pump housings
- Thin-walled pressure vessels

Corrosion resistance

IMPORTANT NOTE:

The following 4-level rating scale (Excellent, Good, Moderate, Restricted) is intended for comparative purposes only and is derived from experiences with wrought product. Additive manufactured material may perform differently; corrosion testing is recommended. Factors that affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish, and dissimilar metal contact.

Nitric Acid	Moderate	Sulfuric Acid	Restricted
Phosphoric Acid	Restricted	Acetic Acid	Moderate
Sodium Hydroxide	Moderate	Salt Spray (NaCl)	Moderate
Sea Water	Restricted	Sour Oil/Gas	Restricted
Humidity	Good		

Physical properties

PROPERTY	At or From	English Units	Metric Units
SPECIFIC GRAVITY	_	7.68	_
DENSITY	_	0.2832 lb/in³	7839kg/m^3
MEAN COEFFICIENT OF THERMAL EXPANSION	68 to 392°F (20 to 200°C)	6.6 x 10 ⁻⁶ in/in/°F	10.8 x 10 ⁻⁶ cm/cm/°C
THERMAL CONDUCTIVITY	At 68°F (20°C)	103 Btu-in/hr/ft²/°F	14.9 W/m·K
MODULUS OF ELASTICITY (E)	_	29.0 x 10 ³ ksi	200,000 MPa

Typical mechanical properties

CONDITION ORIENTATION		0.2% YIELD ULTIMATE TENSILE STRENGTH STRENGTH		ELONGATION REDUCTION IN 4D OF AREA		CHARPY V-NOTCH		HARDNESS		
		ksi	MPa	ksi	MPa	%	%	FT-LBS	J	HRC
QT900 @ 68°F (20°C)	Long	120	827	133	917	23	78	165	224	30
QT900 @ -40°F (-40°C)	Long	_	_	_	_	_	_	125	169	_

_							
			┺			ne	
_	10:	эт.	тr	Δ	3TF	റമ	nт

Annealing	1112 to 1200°F (600 to 650°C)
Cooling	Slow cool
Hardening	1740 to 1920°F (950 to 1050°C), oil quench or polymer quench
Tempering	QT900 properties achieved by tempering 1025 to 1145°F (550 to 620°C), 8 hours, OQ or AC. This alloy may suffer temper embrittlement if tempered at 785 to 1022°F (450 to 550°C), or slow cooled through this temperature range.

Workability

Cold working	The work hardening rate of VIM VAR 1.4418 is relatively low, permitting a good deal of cold reduction.
Hot working	This alloy is easily hot worked in the temperature range of 1650 to 2300°F (900 to 1260°C). The optimum hot working range is 2100 to 2150°F (1150 to 1177°C) for the best combination of hot workability and grain size control. Cool forgings in air to room temperature and anneal.
Machinability	VIM VAR 1.4418 can be machined readily using the same practices employed with other martensitic stainless steels at comparable hardness levels.
Weldability	VIM VAR 1.4418 can be satisfactorily welded by shielded fusion and resistance welding processes. Oxyacetylene welding is not recommended since carbon pickup in the weld may occur. Preheating is not required to prevent cracking during welding. For optimum combination of strength, toughness, and corrosion resistance is obtained by hardening and tempering the welded part.

Typical feeds and speeds

 $The feeds \ and \ speeds \ in \ the \ following \ charts \ are \ conservative \ recommendations \ for \ initial \ setup.$

Higher feeds and speeds may be attainable depending on machining environment.

TURNING—SINGLE-POINT AND BOX TOOLS							
	TOOLS	CARBIDE TOO	CARBIDE TOOLS				
DEPTH OF CUT, IN	SPEED,	FEED,	TOOL	SPEED, FPM		FEED,	TOOL
0. 001,	FPM	IPR	MATERIAL	COATED	UNCOATED	IPR	MATERIAL
.040	75	.007	T-15, M-42	300	450	.007	CC-7
.150	60	.015	T-15, M-42	250	400	.015	CC-6

TURNING — CUT-C	TURNING—CUT-OFF AND FORM TOOLS										
	FEED, IPR TOOL MATERIAL										
SPEED, FPM	CUT-OFF TOOL WIDTH, IN			EED, FPM CUT-OFF TOOL WIDTH, IN FORM TO			FORM TOO	L WIDTH, IN		HIGH-SPEED	CARBIDE
	1/16	1/8	1/4	1/2	1	1-1/2	2	TOOLS	TOOLS		
55	.001	.0013	.0018	.0018	.0014	.0011	.0009	T-15, M-42	C-6		
190	.001	.0013	.0018	.0018	.0014	.0011	.0009	T-15, M-42	C-6		

ROUGH REAMING									
HIGH-SPEED TOOLS CARBIDE TOOLS				FEED, IPR	, REAMER DIAN	IETER, IN			
SPEED, FPM	TOOL MATERIAL	SPEED, FPM	TOOL MATERIAL	1/8	1/4	1/2	1	1-1/2	2
40	M-1, M-2, M-7	_	_	.003	.005	.008	.010	.012	.015
_	_	55	C-2	.004	.006	.009	.015	.018	.020

DRILLING—HIGH-SPEED TOOLS										
	FEED, IPR	FEED, IPR								
SPEED, FPM	NOMINAL HOLE DIAMETER, IN								TOOL MATERIAL	
	1/16	1/8	1/4	1/2	3/4	1	1-1/2	2	MATERIAL	
45	_	.002	.004	.007	.008	.010	.012	.015	M-1, M-7, M-10	

TAPPING—HIGH-SPEED TOOLS						
SPEED, FPM	TOOL MATERIAL					
10 (thread pitch 7 or less)	M-1, M-7, M-10					
15 (thread pitch 8-15)	M-1, M-7, M-10					

MILLING—END PERIPHERAL												
DEPTH OF CUT, IN	HIGH-SPEED TOOLS						CARBIDE TOOLS					
	SPEED, FPM	FEED, IN PER TOOTH CUTTER DIAMETER, IN				TOOL MATERIAL	SPEED, FPM	FEED, IN PER TOOTH CUTTER DIAMETER, IN				TOOL MATERIAL
.020		85	.0005	.001	.002	.003	M-2, M-3, M-7	270	.0005	.001	.003	.005
.060	_ 65	.001	.002	.003	.004	M-2, M-3, M-7	210	.001	.002	.004	.006	C-2

BROACHING—HIGH-SPEED TOOLS									
SPEED, FPM	CHIP LOAD, IN PER TOOTH	TOOL MATERIAL							
10	.002	T-15, M-42							

For additional information, please contact your nearest sales office:

info@cartech.com | 610 208 2000

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make their own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation.