

CarTech® 15-15LC® Modified Stainless

	Type Analysis										
Single figures are nominal except where noted.											
Carbon	0.04 %	Manganese	15.00 to 19.00 %								
Phosphorus (Maximum)	0.050 %	Sulfur (Maximum)	0.050 %								
Silicon (Maximum)	1.00 %	Chromium	16.00 to 21.00 %								
Nickel (Maximum)	3.00 %	Molybdenum	0.50 to 3.00 %								
Nitrogen	0.20 to 0.80 %	Iron	Balance								

General Information

Description

CarTech 15-15LC Modified stainless is an austenitic, nitrogen-strengthened stainless steel. It should be considered for oil and gas industry applications such as nonmagnetic drill collars, stabilizers, and MWD housings.

The lower carbon content of CarTech 15-15LC Modified stainless results in less tendency for carbides to precipitate in grain boundaries compared with normal chrome-manganese stainless grades. This provides CarTech 15-15LC Modified stainless with improved resistance to intergranular stress- corrosion cracking. In addition, nickel, chromium, nitrogen, manganese and molybdenum are controlled to further enhance the resistance to intergranular stress-corrosion cracking.

A post-machining ID compressive stress treatment for drill collars has been developed to further improve the resistance to stress-corrosion cracking.

The strength of CarTech 15-15LC Modified stainless is achieved by warm working on a rotary forge at a temperature below the recrystallization temperature.

Corrosion Resistance

Important Note: The following 4-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors which affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish and dissimilar metal contact.

Nitric Acid	Good	Sulfuric Acid	Restricted
Phosphoric Acid	Restricted	Acetic Acid	Good
Sodium Hydroxide	Moderate	Salt Spray (NaCl)	Good
Sea Water	Moderate	Sour Oil/Gas	Moderate
Humidity	Excellent		

Properties							
Physical Properties							
Specific Gravity	7.76						
Density	0.2800 lb/in ³						
Mean Specific Heat (79 to 241°F)	0.1180 Btu/lb/°F						

CarTech® 15-15LC® Modified Stainless

Mean CTE	
77 to 212°F	8.85 x 10 ∘ in/in/°F
77 to 350°F	9.11 x 10 ₀ in/in/°F
77 to 392°F	9.34 x 10 ₅ in/in/°F
77 to 482°F	9.57 x 10 ₅ in/in/°F
77 to 572°F	9.75 x 10 ₅ in/in/°F
77 to 662°F	9.96 x 10 ⁻⁶ in/in/°F
77 to 752°F	10.2 x 10 ⁻⁶ in/in/°F
77 to 842°F	10.4 x 10 - in/in/°F
77 to 932°F	10.5 x 10 [.] in/in/°F
77 to 1022°F	10.7 x 10 ₅ in/in/°F

Mean Coefficient of Thermal Expansion

ure Range	10-6/°E	10-6/K	
25°C to	10-7 F	10 71	
100	8.85	15.95	
150	9.11	16.41	
200	9.34	16.84	
250	9.57	17.26	
300	9.75	17.59	
350	9.96	17.98	
400	10.16	18.33	
450	10.35	18.68	
500	10.52	18.98	
550	10.67	19.25	
	25°C to 100 150 200 250 300 350 400 450 500	25°C to 10°/°F 100 8.85 150 9.11 200 9.34 250 9.57 300 9.75 350 9.96 400 10.16 450 10.35 500 10.52	

Thermal Conductivity

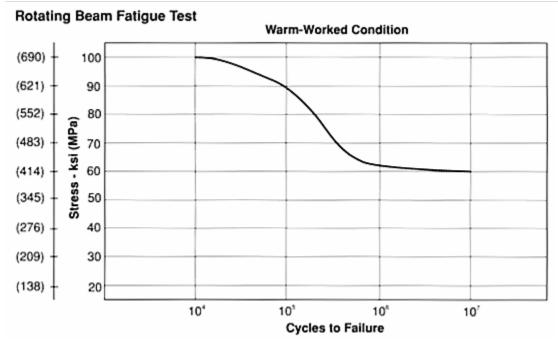
73°F	95.57 BTU-in/hr/ft²/°F
122°F	98.84 BTU-in/hr/ft²/°F
212°F	104.6 BTU-in/hr/ft²/°F
392°F	114.9 BTU-in/hr/ft²/°F
572°F	124.5 BTU-in/hr/ft²/°F
752°F	133.0 BTU-in/hr/ft²/°F

Thermal Conductivity

Test Tem	perature	Btu-in/	
°F	°C	ft²•h•°F	W/m-K
73	23	95.57	13.8
122	50	98.84	14.3
212	100	104.62	15.1
392	200	114.90	16.6
572	300	124.51	18.0
752	400	133.01	19.2

 Modulus of Elasticity (E)
 27.7
 x 10 ° ksi

 Electrical Resistivity (70°F)
 441.0
 ohm-cir-mil/ft


Magnetic Properties

15-15LC Modified stainless is essentially nonmagnetic in both the annealed and warm-worked conditions.

Magnetic permeability of warm-worked material is less than 1.01 based on Severn gauge.

ASTM A342 (field Strength-200 oersteds): 1.002

Typical Mechanical Properties

Typical Room Temperature Mechanical Properties - 15-15LC Modified Stainless

Condition	0.2 Yie Stree	bld	Ultimate Tensile Strength		% Elongation	% Reduction	Charpy Imp Stre	Brinell Hardness		
	ksi	MPa	ksi	MPa	in 4D	of Area	ft-lb	J	naroness	
Annealed										
(1950°F, WQ)	63	434	110	758	50	60	210	285	210	
Warm-Worked										
43/4" Diameter	130	896	150	1034	33	70	210	285	302	
61/2" Diameter	125	862	147	1013	35	72	202	274	293	
9" Diameter	112	772	135	931	38	73	190	258	285	

Heat Treatment

Annealing

15-15LC Modified stainless is generally used in the as-forged, warm-worked condition. However, if annealing is desired, heat to 1900/2100°F (1040/1150°C), hold for one hour per inch of thickness, and water quench.

Workability

Machinability

15-15LC Modified stainless can be machined but with somewhat greater effort than for Type 316. Slow to moderate speeds, moderate feeds and rigid tools are suggested.

Following are typical feeds and speeds for 15-15LC Modified stainless.

Typical Machining Speeds and Feeds – 15-15LC[®] Modified Stainless

The speeds and feeds in the following charts are conservative recommendations for initial setup. Higher speeds and feeds may be attainable depending on machining environment.

Turning-Single-Point and Box Tools

Depth	ŀ	ligh Speed Tool	s	Carbide Tools (Inserts)					
of Cut	Tool		Tool Speed (fpm)		(fpm)	Feed			
(Inches)	Material	Speed (fpm)	Feed (ipr)	Material	Uncoated	Coated	(ipr)		
.150	M2	55	.015	C6	250	300	.015		
.025	T15	70	.007	C7	300	350	.007		

Turning—Cut-Off and Form Tools

Tool M	laterial			Feed (ipr)						
High	Car-	Speed	Cut-Off Tool Width (Inches) Form Tool Width (Inches							hes)
Speed Tools	bide Tools	(fpm)	1/16	1/8	1/4	1/2		1	1 ½	2
T15		40	.001	.001	.0015	.001	15	.001	.0007	.0007
	C6	140	.004	.0055	.0045	.00	4	.003	.002	.002

Rough Reaming

High S	peed	Carbide	e Tools		Feed (ipr) Reamer Diameter (Inches)				
Tool Material	Speed (fpm)	Tool Material	Speed (fpm)	1/8	1/4	1/2	1	1 ½	2
M7	60	C2	80	.003	.005	.008	.012	.015	.018

Drilling

	High Speed Tools										
Tool	Tool Speed Feed (inches per revolution) Nominal Hole Diameter (inches)										
Material	(fpm)	1/16	1/8	1/4	1/2	3/4	1	1 ½	2		
T15, M42	45-50	.001	.002	.004	.007	.010	.012	.015	.018		

Die Threading

FPM for High Speed Tools								
Tool Material	7 or less, tpi	8 to 15, tpi	16 to 24, tpi	25 and up, tpi				
T15, M42	T15, M42 4-8		8-12	10-15				

Milling, End-Peripheral

Depth	High Speed Tools				Carbide Tools							
of Cut	Tool		Feed (ipt) Cutter Diameter (in)			Tool		Feed (ipt) Cutter Diameter (in)				
(inches)	Material	(fpm)	1/4	1/2	3/4	1-2	Material	(ipm)	1/4	1/2	3/4	1-2
.050	M2, M7	65	.001	.002	.003	.004	C2	245	.001	.002	.003	.005

Tapping

Broaching

High Speed Tools			High Speed Tools				
Tool Material	Speed (tpm)]	Tool Material	Speed (fpm)	Chip Load (ipt)		
M1, M7, M10	12-25]	M2, M7	10	.003		

When using carbide tools, surface speed feet/minute (SFPM) can be increased between 2 and 3 times over the high-speed suggestions. Feeds can be increased between 50 and 100%.

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

Additional Machinability Notes

When using carbide tools, surface speed feet/minute (SFPM) can be increased between 2 and 3 times over the high-speed suggestions. Feeds can be increased between 50 and 100%.

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

Weldability

15-15LC Modified stainless can be readily joined by the standard electric-arc welding methods. Welding consumables of matching composition are not currently available; however, other stainless steel consumables should be considered depending on the application. Contact Carpenter for specific details on filler metal selection.

Other Information

Forms Manufactured

Bar-Rounds

Multi-Dimensional Bar

Hollow Bar

Disclaimer:

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation Copyright © 2020 CRS Holdings Inc. All rights reserved.

Visit us on the web at www.cartech.com

Edition Date: 8/1/12